
django SHOP
Release 0.2.1.dev0

May 26, 2016

Contents

1 User Manual 1

2 How to 11

3 Advanced how to 19

4 Reference 23

5 The name 27

Python Module Index 29

i

ii

CHAPTER 1

User Manual

The “instructions” :)

1.1 Tutorial

This tutorial is aimed at people new to django SHOP but already familiar with django. If you aren’t yet, reading their
excellent django tutorial is highly recommended.

The steps outlined in this tutorial are meant to be followed in order.

1.1.1 Installation

• Install from pypi

pip install django-shop

• Add ’shop’ to your INSTALLED_APPS

• Add the shop to your urls.py

(r'^shop/', include('shop.urls')),

1.1.2 Defining your products

The first thing a shop should do is define its products to sell. While some other shop solutions do not require you to,
in django SHOP you must write a django model (or a set of django models) to represent your products.

Roughly, this means you’ll need to create a django model subclassing shop.models.Product, add a Meta class
to it, and register it with the admin, just like you would do with any other django model.

More information can be found in the How to create a product section.

1.1.3 Shop rules: cart modifiers

Cart modifiers are simple python objects that encapsulate all the pricing logic from your specific shop, such as rebates,
taxes, coupons, deals of the week...

Creating a new cart modifier is an easy task: simply create a python object subclass-
ing shop.cart.cart_modifiers_base.BaseCartModifier, and override either its

1

https://docs.djangoproject.com/en/1.5/intro/tutorial01/

django SHOP, Release 0.2.1.dev0

get_extra_cart_item_price_field() or its get_extra_cart_price_field(), depending on
whether your “rule” applies to the whole cart (like taxes for example) or to a single item in your cart (like “buy two,
get one free” rebates).

Theses methods receive either the cart object or the cart item, and need only return a tuple of the form
(description, price_difference).

More in-depth information can be found in the How to create a Cart modifier section.

1.1.4 Shipping backends

1.1.5 Payment backends

1.1.6 More plugins?

You can find more plugins or share your own plugin with the world on the django SHOP website

Lots of functionality in django SHOP was left to implement as plugins and extensions, checking this resource for extra
functionality is highly recommended before starting a new project!

1.2 Getting started

1.2.1 Installation

Here’s the 1 minute guide to getting started with django SHOP.

1. Create a normal Django project (we’ll call it myshop for now):

django-admin startproject example
cd example; django-admin startapp myshop

2. You’ll want to use virtualenv:

virtualenv . ; source bin/activate
pip install south
pip install django-shop
pip install jsonfield

3. Go to your settings.py and configure your DB like the following, or anything matching your setup:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': 'test.sqlite',
'USER': '',
'PASSWORD': '',
'HOST': '',
'PORT': '',

}
}

4. Add the following stuff to middlewares:

MIDDLEWARE_CLASSES = [
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',

2 Chapter 1. User Manual

https://www.django-shop.org/ecosystem/

django SHOP, Release 0.2.1.dev0

'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',

] # <-- Notice how it's a square bracket (a list)? It makes life easier.

5. Obviously, you need to add shop and myshop to your INSTALLED_APPS too:

INSTALLED_APPS = [
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
'django.contrib.messages',
Uncomment the next line to enable the admin:
'django.contrib.admin',
Uncomment the next line to enable admin documentation:
'django.contrib.admindocs',
'polymorphic', # We need polymorphic installed for the shop
'south',
'shop', # The django SHOP application
'shop.addressmodel', # The default Address and country models
'myshop', # the project we just created

]

6. Make the urls.py contain the following:

from shop import urls as shop_urls # <-- Add this at the top

Other stuff here

urlpatterns = patterns('',
Example:
#(r'^example/', include('example.foo.urls')),
Uncomment the admin/doc line below to enable admin documentation:
(r'^admin/doc/', include('django.contrib.admindocs.urls')),
Uncomment the next line to enable the admin:
(r'^admin/', include(admin.site.urls)),
(r'^shop/', include(shop_urls)), # <-- That's the important bit
You can obviously mount this somewhere else

)

7. Most of the stuff you’ll have to do is styling and template work, so go ahead and create a templates directory in
your project:

cd example/myshop; mkdir -p templates/myshop

8. Lock and load:

cd .. ; python manage.py syncdb --all ; python manage.py migrate --fake
python manage.py runserver

9. Point your browser and marvel at the absence of styling:

x-www-browser localhost:8000/shop

You now have a running but very empty django SHOP installation.

1.2. Getting started 3

django SHOP, Release 0.2.1.dev0

1.2.2 Adding a custom product

Having a shop running is a good start, but you’ll probably want to add at least one product class that you can use to
sell to clients!

The process is really simple: you simply need to create a class representing your object in your project’s models.py.
Let’s start with a very simple model describing a book:

from shop.models import Product
from django.db import models

class Book(Product):
The author should probably be a foreign key in the real world, but
this is just an example
author = models.CharField(max_length=255)
cover_picture = models.ImageField(upload_to='img/book')
isbn = models.CharField(max_length=255)

class Meta:
ordering = ['author']

Note: The only limitation is that your product subclass must define a Meta class.

Like a normal Django model, you might want to register it in the admin interface to allow for easy editing by your
admin users. In an admin.py file:

from django.contrib import admin

from models import Book

admin.site.register(Book)

That’s it!

1.2.3 Adding taxes

Adding tax calculations according to local regulations is also something that you will likely have to do. It is relatively
easy as well: create a new file in your project, for example modifiers.py, and add the following:

import decimal

from shop.cart.cart_modifiers_base import BaseCartModifier

class Fixed7PercentTaxRate(BaseCartModifier):
"""
This will add 7% of the subtotal of the order to the total.

It is of course not very useful in the real world, but this is an
example.
"""

def get_extra_cart_price_field(self, cart, request):
taxes = decimal.Decimal('0.07') * cart.subtotal_price
to_append = ('Taxes total', taxes)
return to_append

4 Chapter 1. User Manual

django SHOP, Release 0.2.1.dev0

You can now use this newly created tax modifier in your shop! To do so, simply add the class to the list of cart
modifiers defined in your settings.py file:

SHOP_CART_MODIFIERS = ['myshop.modifiers.Fixed7PercentTaxRate']

Restart your server, and you should now see that a cart’s total is dynamically augmented to reflect this new rule.

You can implement many other types of rules by overriding either this method or other methods defined in
BaseCartModifier.

Important: Remember that cart modifiers are ordered! Like middlewares, the order in which they are declared in
settings.SHOP_CART_MODIFIERS matters.

1.3 Templatetags

Django SHOP ships various templatetags to make quick creation of HTML templates easier. In order to use these
templatetags you need to load them in your template

{% load shop_tags %}

1.3.1 Cart

Renders information about the Cart object. This could be used (for example) to show the total amount of items
currently in the cart on every page of your shop.

Usage

{% load shop_tags %}
{% cart %}

In order to define your own template, override the template shop/templatetags/_cart.html. The tag adds a
variable called cart to the context.

1.3.2 Order

Renders information about an Order object.

Usage

{% load shop_tags %}
{% order my_order %}

In order to define your own template, override the template shop/templatetags/_order.html. The tag adds
a variable called order to the context.

1.3.3 Product

Renders information about all active products in the shop. This is useful if you need to display your products on pages
other than just product_list.html.

1.3. Templatetags 5

django SHOP, Release 0.2.1.dev0

Usage

If no argument is given, the tag will just render all active products. The tag allows an optional argument objects.
It should be a queryset of Product objects. If supplied, the tag will render the given products instead of all active
products.

{% load shop_tags %}
{% products %}
{% products object_list %}

In order to define your own template, override the template shop/templatetags/_products.html. The tag
adds a variable called products to the context.

1.3.4 Filters

priceformat

Renders the float using the SHOP_PRICE_FORMAT format. This should be used whenever displaying prices in the
templates.

{{ product.get_price|priceformat }}

1.4 Signals

1.4.1 Order

The shop.order_signals module defines signals that are emitted during the checkout process

Warning: Currently, not all signals are emitted inside of django SHOP. This may change in the future.

processing

shop.order_signals.processing

Emitted when the Cart instance was converted to an Order.

Arguments sent with this signal:

sender The Order model class

order The Order instance

cart The Cart instance

payment_selection

shop.order_signals.payment_selection

Emitted when the user is shown the “select a payment method” page.

Arguments sent with this signal:

sender The shop.shipping.api.ShippingAPI instance

6 Chapter 1. User Manual

django SHOP, Release 0.2.1.dev0

order The Order instance

confirmed

shop.order_signals.confirmed

Emitted when the user has finished placing his order (regardless of the payment success or failure).

Arguments sent with this signal:

sender not defined

order The Order instance

Note: This signal is currently not emitted.

completed

shop.order_signals.completed

Emitted when payment is received for the Order. This signal is emitted by the
shop.views.checkout.ThankYouView.

Arguments sent with this signal:

sender The ThankYouView instance

order The Order instance

cancelled

shop.order_signals.cancelled

Emitted if the payment was refused or another fatal problem occurred.

Arguments sent with this signal:

sender not defined

order The Order instance

Note: This signal is currently not emitted.

shipped

shop.order_signals.shipped

Emitted (manually) when the shop clerk or robot shipped the order.

Arguments sent with this signal:

sender not defined

order The Order instance

1.4. Signals 7

django SHOP, Release 0.2.1.dev0

Note: This signal is currently not emitted.

1.5 Contributing

1.5.1 Running tests

It’s important to run tests before committing :)

Setting up the environment

We highly suggest you run the tests suite in a clean environment, using a tool such as virtualenv

The following packages are needed for the test suite to run:

• django

• django_polymorphic

• django-classy-tags

Running the following command inside your virtualenv should get you started:

pip install django django_polymorphic django-classy-tags

Running the tests

Thankfully, we provided a small yet handy script to do it for you! Simply invoke runtests.sh on a unix platform
and you should be all set.

The test suite should output normally (only ”.“‘s), and we try to keep the suite fast (subsecond), so that people can test
very often.

Options

While a simple tool, runtests.sh provides the following options:

• --with-coverage : run the tests using coverage and let the coverage results be displayed in your default
browser (run pip install coverage beforehand)

• --with-docs : run the tests and generate the documentation (the one you’re reading right now).

1.5.2 Community

Most of the discussion around django SHOP takes place on IRC (Internet Relay Chat), on the freenode servers in the
#django-shop channel.

We also have a mailing list and a google group:

http://groups.google.com/group/django-shop

8 Chapter 1. User Manual

http://pypi.python.org/pypi/virtualenv
https://www.djangoproject.com/
https://github.com/chrisglass/django_polymorphic
https://github.com/ojii/django-classy-tags

django SHOP, Release 0.2.1.dev0

1.5.3 Code guidelines

• Like most projects, we try to follow PEP 8 as closely as possible

• Most pull requests will be rejected without proper unit testing

• Generally we like to discuss new features before they are merged in, but this is a somewhat flexible rule :)

1.5.4 Sending a pull request

We use github for development, and so all code that you would like to see included should follow the following simple
workflow:

• Clone django-shop

• Checkout your fork

• Make a feature branch (to make pull requests easier)

• Hack hack, Test test, Commit commit, Test test

• Push your feature branch to your remote (your fork)

• Use the github interface to create a pull request from your branch

• Wait for the community to review your changes. You can hang out with us and ask for feedback on #django-shop
(on freenode) in the mean time!

• If some changes are required, please commit to your local feature branch and push the changes to your remote
feature branch. The pull request will be updated automagically with your new changes!

• DO NOT add unrelated commits to your branch, since they make the review process more complicated and
painful for everybody.

More information can be found on Github itself: http://help.github.com/send-pull-requests/

1.5. Contributing 9

https://www.python.org/dev/peps/pep-0008
http://help.github.com/send-pull-requests/

django SHOP, Release 0.2.1.dev0

10 Chapter 1. User Manual

CHAPTER 2

How to

Various short articles on how to do specific things

2.1 How to create a product

Creating a product in django SHOP is really easy, but requires you to write python code.

2.1.1 Create a model

The first step for you is to create a model to use as a product. We will create an example Book model together:

from shop.models import Product
from django.db import models

class Book(Product):
isbn = models.CharField(max_length=255)
class Meta: pass

Note: Your product subclass must define a Meta class. Usually, you will want to do so anyway, to define ordering
and verbose names for example.

The following fields are already defined in the Product superclass:

class shop.models.Product

name
The name/title of the product

slug
The slug used to refer to this product in the URLs

active
Products flagged as not active will not show in the lists

date_added
The date at which the product was first created

last_modified
A timestamp of when the product was last modified

11

django SHOP, Release 0.2.1.dev0

unit_price
The base price for one item

2.1.2 Create a template

Like other objects in Django, you will need to create a template to display your model’s contents to the world.

By default, your Product subclass will use the shop/product_detail.html template as a fallback, but will
use your own template if you follow Django’s naming conventions: appname/book_detail.html.

That’s all there is to it :)

2.1.3 Using your newly created Product

Your product should behave like a normal Django model in all circumstances. You should register it in admin (and
create an admin class for it) like a normal model.

Code wise, the following options are possible to retrieve your newly created model:

This gets your model's instance the normal way, you get both your model's
fields and the Product fields
o = MyProduct.objects.get(pk=...)

This is also possible - You retrieve a MyProduct instance, using the
Product manager
o = Product.objects.get(pk=...)

Note: This is possible thanks to the terrific django_polymorphic dependency

2.1.4 Product variations

By design, django SHOP does not include an out of the box solution to handling product variations (colors, sizes...) in
order to let implementors create their own unrestricted solutions.

If you want such a pre-made solution for simple cases, we suggest you take a look at the shop_simplevariations
“add-on” application.

2.2 How to create a Cart modifier

Cart modifiers are simple plugins that allow you to define rules according to which carts should be modified (and in
what order).

Generally, this is how you implement a “bulk rebate” module, for instance.

2.2.1 Writing a simple cart modifier for the whole cart

Let’s assume you want to provide a discount of 10% off the cart’s total to clients that buy more than 500$ of goods.

This will affect the price of the whole cart. We will therefore override the get_extra_cart_price_field()
method of shop.cart.cart_modifiers_base.BaseCartModifier:

12 Chapter 2. How to

https://github.com/chrisglass/django-shop-simplevariations

django SHOP, Release 0.2.1.dev0

from shop.cart.cart_modifiers_base import BaseCartModifier
from decimal import Decimal # We need this because python's float are confusing

class MyModifier(BaseCartModifier):
"""
An example class that will grant a 10% discount to shoppers who buy
more than 500 worth of goods.
"""
def get_extra_cart_price_field(self, cart, request):

ten_percent = Decimal('10') / Decimal('100')
Now we need the current cart total. It's not just the subtotal field
because there may be other modifiers before this one
total = cart.current_total

if total > Decimal('500'):
rebate_amount = total * ten_percent
rebate_amount = - rebate_amount # a rebate is a negative difference
extra_dict = { 'Rebate': '%s %%' % ten_percent }
return ('My awesome rebate', rebate_amount)

else:
return None # None is no-op: it means "do nothing"

def get_extra_cart_item_price_field(self, cart, request):
Do modifications per cart item here
label = 'a label' # to distinguish, which modifier changed the price
extra_price = Decimal(0) # calculate addition cost here, can be a negative value
extra_dict = {} # an optional Python dictionary serializable as JSON

which can be used to store arbitrary data
return (label, extra_price, extra_dict)

Adding this cart modifier to your SHOP_CART_MODIFIERS setting will enable it, and you should be able to already
test that your cart displays a rebate when the total for the order is over 500.

Note: When using cart.extra_price_fields.append(’your label’, price) you might want to
use from django.utils.translation import ugettext as _ for your label in multilingual projects.
Please make sure that you use gettext

The request object is passed into the methods get_extra_cart_price_field and
get_extra_cart_item_price_field. This object contains the additional temporary attribute
cart_modifier_state. This is an empty Python dictionary, which can be used to pass arbitrary data
from one cart modifier to another one.

2.3 How to create a Payment backend

Payment backends must be listed in settings.SHOP_PAYMENT_BACKENDS

2.3.1 Shop interface

While we could solve this by defining a superclass for all payment backends, the better approach to plugins is to
implement inversion-of-control, and let the backends hold a reference to the shop instead.

The reference interface for payment backends is located at

class shop.payment.api.PaymentAPI

2.3. How to create a Payment backend 13

django SHOP, Release 0.2.1.dev0

Currently, the shop interface defines the following methods:

Common with shipping

PaymentAPI.get_order(request)
Returns the order currently being processed.

Parameters request – a Django request object

Return type an Order instance

PaymentAPI.add_extra_info(order, text)
Adds an extra info field to the order (whatever)

Parameters

• order – an Order instance

• text – a string containing the extra order information

PaymentAPI.is_order_payed(order)
Whether the passed order is fully paid or not

Parameters order – an Order instance

Return type bool

PaymentAPI.is_order_complete(order)
Whether the passed order is in a “finished” state

Parameters order – an Order instance

Return type bool

PaymentAPI.get_order_total(order)
Returns the order’s grand total.

Parameters order – an Order instance

Return type Decimal

PaymentAPI.get_order_subtotal(order)
Returns the order’s sum of item prices (without taxes or S&H)

Parameters order – an Order instance

Return type Decimal

PaymentAPI.get_order_short_name(order)
A short human-readable description of the order

Parameters order – an Order instance

Return type a string with the short name of the order

PaymentAPI.get_order_unique_id(order)
The order’s unique identifier for this shop system

Parameters order – an Order instance

Return type the primary key of the Order (in the default implementation)

PaymentAPI.get_order_for_id(id)
Returns an Order object given a unique identifier (this is the reverse of get_order_unique_id())

Parameters id – identifier for the order

14 Chapter 2. How to

django SHOP, Release 0.2.1.dev0

Return type the Order object identified by id

Specific to payment

PaymentAPI.confirm_payment(order, amount, transaction_id, save=True)
This should be called when the confirmation from the payment processor was called and that the payment
was confirmed for a given amount. The processor’s transaction identifier should be passed too, along with an
instruction to save the object or not. For instance, if you expect many small confirmations you might want to
save all of them at the end in one go (?). Finally the payment method keeps track of what backend was used for
this specific payment.

Parameters

• order – an Order instance

• amount – the paid amount

• transaction_id – the backend-specific transaction identifier

• save – a bool that indicates if the changes should be committed to the database.

2.3.2 Backend interface

The payment backend should define the following interface for the shop to be able do to anything sensible with it:

Attributes

PaymentBackend.backend_name
The name of the backend (to be displayed to users)

PaymentBackend.url_namespace
“slug” to prepend to this backend’s URLs (acting as a namespace)

Methods

PaymentBackend.__init__(shop)
must accept a “shop” argument (to let the shop system inject a reference to it)

Parameters shop – an instance of the shop

PaymentBackend.get_urls()
should return a list of URLs (similar to urlpatterns), to be added to the URL resolver when urls are loaded. These
will be namespaced with the url_namespace attribute by the shop system, so it shouldn’t be done manually.

Security

In order to make your payment backend compatible with the SHOP_FORCE_LOGIN setting please make sure to add
the @shop_login_required decorator to any views that your backend provides. See How to secure your views
for more information.

2.4 How to create a shipping backend

• Shipping backends must be listed in settings.SHOP_SHIPPING_BACKENDS

2.4. How to create a shipping backend 15

django SHOP, Release 0.2.1.dev0

2.4.1 Shop interface

While we could solve this by defining a superclass for all shipping backends, the better approach to plugins is to
implement inversion-of-control, and let the backends hold a reference to the shop instead.

The reference interface for shipping backends is located at

class shop.shipping.api.ShippingAPI

2.4.2 Backend interface

The shipping backend should define the following interface for the shop to be able do to anything sensible with it:

Attributes

backend_name
The name of the backend (to be displayed to users)

url_namespace
“slug” to prepend to this backend’s URLs (acting as a namespace)

Methods

__init__(shop)
must accept a “shop” argument (to let the shop system inject a reference to it)

Parameters shop – an instance of the shop

get_urls()
should return a list of URLs (similar to urlpatterns), to be added to the URL resolver when urls are loaded. These
will be namespaced with the url_namespace attribute by the shop system, so it shouldn’t be done manually.

Security

In order to make your shipping backend compatible with the SHOP_FORCE_LOGIN setting please make sure to add
the @shop_login_required decorator to any views that your backend provides. See How to secure your views
for more information.

2.5 How to interact with the cart

Interacting with the cart is probably the single most important thing shop implementers will want to do: e.g. adding
products to it, changing quantities, etc...

There are roughly two different ways to interact with the cart: through Ajax, or with more standard post-and-refresh
behavior.

2.5.1 Updating the whole cart

The normal form POST method is pretty straightforward - you simply POST to the cart’s update URL
(shop/cart/update/ by default) and pass it parameters as: update_item-<item id>=<new quantity> Items corresponding
to the ID will be updated with the new quantity

16 Chapter 2. How to

django SHOP, Release 0.2.1.dev0

2.5.2 Emptying the cart

Posting to shop/cart/delete empties the cart (the cart object is the same, but all cartitems are removed from it)

2.6 How to secure your views

Chances are that you don’t want to allow your users to browse all views of the shop as anonymous users. If you set
SHOP_FORCE_LOGIN to True, your users will need to login before proceeding to checkout.

When you add your own shipping and payment backends you will want to add this security mechanism as well. The
problem is that the well known @login_required decorator will not work on class based views and it will also
not work on functions that are members of a class.

For your convenience we provide three utilities that will help you to secure your views:

2.6.1 @on_method decorator

This decorator can be wrapped around any other decorator. It should be used on functions that are members of classes
and will ignore the first parameter self and regard the second parameter as the first instead. More information can
be found here.

Usage:

from shop.util.decorators import on_method, shop_login_required

class PayOnDeliveryBackend(object):

backend_name = "Pay On Delivery"
url_namespace = "pay-on-delivery"

[...]

@on_method(shop_login_required)
def simple_view(self, request):

[...]

2.6.2 @shop_login_required decorator

This decorator does the same as Django’s @login_required decorator . The only difference is that it checks for the
SHOP_FORCE_LOGIN setting. If that setting is False, login will not be required.

2.6.3 LoginMixin class

If you are using class based views for anything related to the shop you can use
shop.util.login_mixin.LoginMixin to secure your views. More information on this can be found here. We
are using a slightly modified version of that LoginMixin that makes sure to check for the SHOP_FORCE_LOGIN
setting.

Usage:

2.6. How to secure your views 17

http://www.toddreed.name/content/django-view-class/
https://docs.djangoproject.com/en/dev/topics/auth/#django.contrib.auth.decorators.login_required
https://groups.google.com/d/msg/django-users/g2E_6ZYN_R0/tnB9b262lcAJ

django SHOP, Release 0.2.1.dev0

class CheckoutSelectionView(LoginMixin, ShopTemplateView):
template_name = 'shop/checkout/selection.html'

[...]

18 Chapter 2. How to

CHAPTER 3

Advanced how to

More focused short articles, focusing on less general and more advanced use cases.

3.1 How to extend django SHOP models

(Instead of the default ones)

Some people might feel like the django SHOP models are not suitable for their project, or want to extend functionality
for their specific needs.

This is a rather advanced use case, and most developers should hopefully be happy with the default models. It is
however relatively easy to do.

All models you can override have a corresponding setting, which should contain the class path to the model you wish
to use in its stead.

Note: While your models will be used, they will still be “called” by their default django SHOP name.

3.1.1 Example

Extending the Product model in django SHOP works like this:

In myproject.models
from shop.models_bases import BaseProduct
class MyProduct(BaseProduct):

def extra_method(self):
return 'Yay'

class Meta:
pass

In your project's settings.py, add the following line:
SHOP_PRODUCT_MODEL = 'myproject.models.MyProduct'

Important: Your model replacement must define a Meta class. Otherwise, it will inherit its parent’s Meta, which
will break things. The Meta class does not need to do anything important - it just has to be there.

19

django SHOP, Release 0.2.1.dev0

Note: The above example is intentionally not using the same module as the examples given earlier in this docu-
mentation (myproject versus myshop). If MyProduct and Book were defined in the same module a circular import
will result culminating in an error similar to: django.core.exceptions.ImproperlyConfigured:
Error importing backend myshop.models: "cannot import name Product". Check
your SHOP_PRODUCT_MODEL setting.

From a django interactive shell, you should now be able to do:

>>> from shop.models import Product
>>> p = Product.objects.all()[0] # I assume there is already at least one
>>> p.extra_method()
Yay
>>> p.__class__
<class object's class>

3.1.2 Settings

All available settings to control model overrides are defined in General Settings

3.2 How to use your own addressmodel

(Instead of the default one)

Some people might feel like the current addressmodel is not suitable for their project. You might be using a “client” +
address model from an external application or simply want to write your own.

This is a rather advanced use case, and most developers should hopefully be happy with the default model. It is
however relatively easy to do.

3.2.1 Deactivate the default addressmodel

Simple enough: just remove or comment the corresponding entry in your project’s INSTALLED_APPS:

INSTALLED_APPS = (
...
'shop', # The django SHOP
#'shop.addressmodel', # <-- Comment this out
...
)

3.2.2 Hook your own model to the shop

To achieve this, simply add a SHOP_ADDRESS_MODEL to your settings file, and give the full python path to your
Address model as a value:

SHOP_ADDRESS_MODEL = 'myproject.somepackage.MyAddress'

Your custom model must unfortunately have the following two fields defined for the checkout views to work:

user_shipping = models.OneToOneField(User, related_name='shipping_address', blank=True, null=True)
user_billing = models.OneToOneField(User, related_name='billing_address', blank=True, null=True)

20 Chapter 3. Advanced how to

django SHOP, Release 0.2.1.dev0

This is to ensure that the views take handle “attaching” the address objects to the User (or the session if the shopper is
a guest).

We recommend adding the as_text() method to your address model. This ‘collects’ all fields and returns them in
one string. This string will be saved to the order (to billing_address_text or shipping_address_text
accordingly) during checkout view.

You are obviously free to subclass these views and hook in your own behavior.

3.2. How to use your own addressmodel 21

django SHOP, Release 0.2.1.dev0

22 Chapter 3. Advanced how to

CHAPTER 4

Reference

Reference sheets and lists regarding django SHOP

4.1 Plugins

Django SHOP defines 3 types of different plugins for the time being:

1. Cart modifiers

2. Shipping modules

3. Payment modules

4.1.1 Cart modifiers

Cart modifiers are plugins that modify the cart’s contents.

Rough categories could be discount modules or tax modules: rules for these modules are invariant, and should be
“stacked”.

Example: “CDs are buy two get one free this month”, “orders over $500 get a 10% discount”

How they work

Cart modifiers should extend the shop.cart.cart_modifiers_base.BaseCartModifier class.

Users must register these filters in the settings.SHOP_PRICE_MODIFIERS settings entry. Modifiers will be iterated
and function in the same fashion as django middleware classes.

BaseCartModifier defines a set of methods that implementations should override, and that are called for each
cart item/cart when the cart’s update() method is called.

Example implementations

You can refer to the shop.cart.modifiers package to see some example implementations

23

django SHOP, Release 0.2.1.dev0

4.1.2 Shipping backends

Shipping backends differ from price modifiers in that there must be only one shipping backend selected per order (the
shopper must choose which delivery method to use)

Shipping costs should be calculated on an Order object, not on a Cart object (Order instances are fully serialized
in the database for archiving purposes).

How they work

Shipping backends need to be registered in the SHOP_SHIPPING_BACKENDS Django setting. They do not need to
extend any particular class, but need to expose a specific interface, as defined in Backend interface.

The core functionality the shop exposes is the ability to retrieve the current Order object (and all it’s related bits and
pieces such as extra price fields, line items etc...) via a convenient self.shop.get_order() call. This allows
for your module to be reused relatively easily should another shop system implement this interface.

On their part, shipping backends should expose at least a get_urls() method, returning a urlpattern-style list
or urls. This allows backend writers to have almost full control of the shipping process (they can create views and
make them available to the URL resolver).

Please note that module URLs should be namespaced, and will be added to the ship/ URL namespace. This is a
hard limitation to avoid URL name clashes.

4.1.3 Payment backends

Payment backends must also be selected by the end user (the shopper). Theses modules take care of the actual payment
processing.

How they work

Similar to shipping backends, payment backends do not need to extend any particular class, but need to expose a
specific interface, as defined in Backend interface.

They also obtain a reference to the shop, with some convenient methods defined such as
self.shop.get_order().

They must also define a get_urls() method, and all defined URLs will be namespaced to pay/.

4.2 General Settings

This is a small list of the settings defined in django SHOP.

4.2.1 SHOP_PAYMENT_BACKENDS

A list (or iterable) of payment backend class paths. These classes will be used as the active payment backends by the
checkout system, and so anything in this list will be shown to the customer for him/her to make a decision

4.2.2 SHOP_SHIPPING_BACKENDS

In a similar fashion, this must be a list of shipping backends. This list is used to display to the end customer what
shipping options are available to him/her during the checkout process.

24 Chapter 4. Reference

django SHOP, Release 0.2.1.dev0

4.2.3 SHOP_CART_MODIFIERS

These modifiers function like the django middlewares. The cart will call each of these classes, in order, every time it
is displayed. They are passed every item in the cart, as well as the cart itself.

4.2.4 SHOP_FORCE_LOGIN

If True, all views after the CartDetails view will need the user to be authenticated. An anonymous user will be
redirected to your login url. Please read more on authentication in Django’s official authentication documentation .
By default it’s set to False.

4.2.5 SHOP_PRICE_FORMAT

Used by the priceformat template filter to format the price. Default is ’%0.2f’

4.3 Backend specific Settings

Some backends define extra settings to tweak their behavior. This should be an exhaustive list of all of the backends
and modifiers included in the trunk of django SHOP.

4.3.1 SHOP_SHIPPING_FLAT_RATE

(Optional) The “flat rate” shipping module uses this to know how much to charge. This should be a string, and will be
converted to a Decimal by the backend.

4.4 Extensibility Settings

Theses settings allow developers to extend the shop’s functionality by replacing models with their own models. More
information on how to use these settings can be found in the How to extend django SHOP models section.

4.4.1 SHOP_CART_MODEL

(Optional) A python classpath to the class you want to replace the Cart model with. Example value: mypro-
ject.models.MyCartModel

4.4.2 SHOP_ADDRESS_MODEL

(Optional) A python classpath to the class you want to replace the shop.addressmodel.models.Address
model with. See How to use your own addressmodel for a more complete example.

Example value: myproject.models.MyAddressModel

4.4.3 SHOP_ORDER_MODEL

(Optional) A python classpath to the class you want to replace the shop.models.Order model with.

Example value: myproject.models.MyOrderModel

4.3. Backend specific Settings 25

https://docs.djangoproject.com/en/dev/topics/auth/

django SHOP, Release 0.2.1.dev0

26 Chapter 4. Reference

CHAPTER 5

The name

The official name of this project is django SHOP.

Django SHOP should be capitalised at the start of sentences and in title-case headings.

When referring to the package, repositories and any other things in which spaces are not permitted, use django-shop.

27

django SHOP, Release 0.2.1.dev0

28 Chapter 5. The name

Python Module Index

s
shop.order_signals, 6
shop.payment.api, 13

29

django SHOP, Release 0.2.1.dev0

30 Python Module Index

Index

Symbols
__init__(), 16
__init__() (shop.payment.api.PaymentBackend method),

15

A
active (shop.models.Product attribute), 11
add_extra_info() (shop.payment.api.PaymentAPI

method), 14

B
backend_name, 16
backend_name (shop.payment.api.PaymentBackend at-

tribute), 15

C
confirm_payment() (shop.payment.api.PaymentAPI

method), 15

D
date_added (shop.models.Product attribute), 11

G
get_order() (shop.payment.api.PaymentAPI method), 14
get_order_for_id() (shop.payment.api.PaymentAPI

method), 14
get_order_short_name() (shop.payment.api.PaymentAPI

method), 14
get_order_subtotal() (shop.payment.api.PaymentAPI

method), 14
get_order_total() (shop.payment.api.PaymentAPI

method), 14
get_order_unique_id() (shop.payment.api.PaymentAPI

method), 14
get_urls(), 16
get_urls() (shop.payment.api.PaymentBackend method),

15

I
is_order_complete() (shop.payment.api.PaymentAPI

method), 14

is_order_payed() (shop.payment.api.PaymentAPI
method), 14

L
last_modified (shop.models.Product attribute), 11

N
name (shop.models.Product attribute), 11

P
PaymentAPI (class in shop.payment.api), 13
Python Enhancement Proposals

PEP 8, 9

S
shop.models.Product (built-in class), 11
shop.order_signals (module), 6
shop.order_signals.cancelled (built-in variable), 7
shop.order_signals.completed (built-in variable), 7
shop.order_signals.confirmed (built-in variable), 7
shop.order_signals.payment_selection (built-in variable),

6
shop.order_signals.processing (built-in variable), 6
shop.order_signals.shipped (built-in variable), 7
shop.payment.api (module), 13
shop.shipping.api.ShippingAPI (built-in class), 16
slug (shop.models.Product attribute), 11

U
unit_price (shop.models.Product attribute), 11
url_namespace, 16
url_namespace (shop.payment.api.PaymentBackend at-

tribute), 15

31

	User Manual
	How to
	Advanced how to
	Reference
	The name
	Python Module Index

