

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	djangoSHOP 0.9.1 documentation

Django SHOP documentation

This is the documentation starting from version 0.9; if you are looking for the documentation of
django-shop version 0.2, please check the sidebar of RTD.

Version 0.9 of djangoSHOP is a complete rewrite of the code base, keeping the concepts of model
overriding and cart modifiers. With some effort it should be possible to migrate existing projects
to this new release.

	1. Software Architecture

	2. Unique Features of djangoSHOP

Tutorial

This tutorial shows how to setup a working e-commerce site with djangoSHOP using the given
dependencies. The code required to setup this demo can be found in the example/myshop folder.

	1. Tutorial

	2. Quickstart a Running Demo

	3. Modeling a simple product

	4. Modeling a Multilingual Product

	5. Products with Different Properties

	6. Catalog Views

	7. Cart and Checkout

Reference

Reference to classes and concepts used in djangoSHOP

	1. Customer Model

	2. Deferred Model Pattern

	3. Money Types

	4. Product Models

	5. Catalog

	6. Filter Products by its Attributes

	7. Cascade Plugins

	8. Cart and Checkout

	9. Payment Providers

	10. Order

	11. Managing the Deliver Process

	12. Designing an Address Model

	13. Full Text Search

	14. Notifications

	15. REST Serializers

How To’s

Some recipes on how to perform certain tasks in djangoSHOP.

This collection of recipes unfortunately is not finished yet.

	1. Add Customized HTML Snippets

	2. Handling Discounts

	3. Taxes

Development and Community

	Changelog for djangoSHOP

	Contributing

License

DjangoSHOP is licensed under the terms of the BSD license.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

1. Software Architecture

The djangoSHOP framework is, as its name implies, a framework and not a software which runs
out of the box. Instead, an e-commerce site built upon djangoSHOP, always consists of this
framework, a bunch of other Django apps and the merchant’s own implementation. While this may
seem more complicate than a ready-to-use solution, it gives the programmer enormous advantages
during the implementation:

Not everything can be “explained” to a software system using user interfaces. When reaching a
certain point of complexity, it normally is easier to pour those requirements into code, rather
than to expect yet another set of configuration buttons.

When evaluating djangoSHOP with other e-commerce solutions, I therefore suggest to do the
following litmus test:

Consider a product which shall be sold world-wide. Depending on the country’s origin of the request,
use the native language and the local currency. Due to export restrictions, some products can not
be sold everywhere. Moreover, in some countries the value added tax is part of the product’s price,
and must be stated separately on the invoice, while in other countries, products are advertised
using net prices, and tax is added later on the invoice.

Instead of looking for software which can handle such a complex requirement, rethink about writing
your own plugins, able to handle this. With the django, REST and djangoSHOP frameworks,
this normally is possible in a few dozen lines of clearly legible Python code. Compare this to
solutions, which claim to handle such complex requirements. They normally are shipped containing
huge amounts of features, which very few merchants ever require, but which bloat the overall system
complexity, making such a piece of software expensive to maintain.

1.1. Design Decisions

1.1.1. Single Source of Truth

A fundamental aspect of good software design is to follow the principle of “Don’t repeat yourself”,
often denoted as DRY. In djangoSHOP we aim for a single source of truth, wherever possible.

For instance have a look at the shop.models.address.BaseShippingAddress. Whenever we
add, change or remove a field, the ORM mapper of Django gets notified and with
./manage.py makemigrations followed by ./manage.py migrate our database scheme is updated.
But even the input fields of our address form adopt to all changes in our address model. Even the
client side form field validation adopts to every change in our address model. As we can see, here
our single source of truth is the address model.

1.1.2. Feature Completeness

A merchant who wants to implement a unique feature for his e-commerce site, must never have to
touch the code of the framework. Aiming for ubiquity means, that no matter how challenging a feature
is, it must be possible to be implemented into the merchant’s own implementation, rather than by
patching the framework itself.

Otherwise this framework contains a bug - not just a missing feature! I’m sure some merchants will
come up with really weird ideas, I never have thought of. If the djangoSHOP framework inhibits
to add a feature, then feel free to create a bug report. The claim “feature completeness” for a
framework is the analogue to the term “Turing completeness” for programming languages.

Consider that on many sites, a merchant’s requirement is patched into existing code. This means
that every time a new version of the e-commerce software is released, that patch must be repeatedly
adopted. This can become rather dangerous when security flaws in that software must be closed
immediately. DjangoSHOP instead is designed, so that the merchant’s implementation and third
party plugins have to subclass its models and to override its templates accordingly.

1.1.3. Minimalism

In a nutshell, djangoSHOP offers this set of basic functionalities, to keep the framework
simple and stupid (KISS) without reinventing the wheel:

	A catalog to display product lists and detail views.

	Some methods to add products to the cart.

	A way to remove items from the cart or change their quantities.

	A set of classes to modify the cart’s totals.

	A collection of forms, where customers can add personal, shipping and payment information.

	A way to perform the purchase: this converts the cart into an order.

	A list view where customers can lookup their previously performed orders

	A backend tool which helps to track the state of orders.

All functionality required to build a real e-commerce site, sits on top of this. Computing taxes
for instance, can vary a lot among different legislations and thus is not part of the framework.
The same applies for vouchers, rebates, delivery costs, etc.

These are the parts, which must be fine tuned by the merchant. They can be rather complicate to
implement and are best implemented by separate plugins.

1.1.4. Separation of Concern

Compared to other e-commerce solutions, the djangoSHOP framework has a rather small footprint
in terms of code lines, database tables and classes. This does not mean, that its functionality is
somehow limited. Instead, the merchant’s own implementation can become rather large. This is
because djangoSHOP implies dependencies to many third party Django apps.

Having layered systems gives us programmers many advantages:

	We don’t have to reinvent the wheel for every required feature.

	Since those dependencies are used in other applications, they normally are tested quite well.

	No danger to create circular dependencies, as found often in big libraries and stand alone
applications.

	Better overview for newcomers, which part of the system is responsible for what.

	Easier to replace one component against another one.

Fortunately Django gives us all the tools to stitch those dependencies together. If for instance we
would use one of the many PHP-based e-commerce system, we’d have to stay inside their modest
collection for third party apps, or reinvent the wheel. This often is a limiting factor compared to
the huge ecosystems arround Django.

1.1.5. Inversion of Control

Wherever possible, djangoSHOP tries to delegate the responsibility for taking decision to the
merchant’s implementation of the site. Let explain this by a small example: When the customer
adds a product to the cart, djangoSHOP consults the implementation of the product to determine
whether the given item is already part of the cart or not. This allows the merchant’s implementation
to fine tune its product variants.

1.2. Core System

Generally, the shop system can be seen in three different phases:

1.2.1. The shopping phase

From a customers perspective, this is where we look around at different products, presumably in
different categories. We denote this as the catalog list- and catalog detail views. Here we browse,
search and filter for products. In one of the list views, we edit the quantity of the products to
be added to our shopping cart.

Each time a product is added, the cart is updated which in turn run the so named “Cart Modifiers”.
Cart modifiers sum up the line totals, add taxes, rebates and shipping costs to compute the final
total. The Cart Modifiers are also during the checkout phase (see below), since the chosen shipping
method and destination, as well as the payment method may modify the final total.

1.2.2. The checkout process

Her the customer must be able to refine the cart’ content: Change the quantity of an item, or remove
that item completely from the cart.

During the checkout process, the customer must enter his addresses and payment informations. These
settings may also influence the cart’s total.

The final step during checkout is the purchase operation. This is where the cart’s content is
converted into an order object and emptied afterwards.

1.2.3. The fulfillment phase

It is now the merchants’s turn to take further steps. Depending on the order status, certain
actions must be performed immediately or the order must be kept in the current state until some
external events happen. This could be a payment receivement, or that an ordered item arrived in
stock. While setting up a djangoSHOP project, the allowed status transitions for the fulfillment
phase can be plugged together, giving the merchant the possibility to programmatically define his
order workflows.

1.3. Plugins

Django SHOP defines 5 types of different plugins:

	Product models

	Cart modifiers

	Payment backends

	Shipping backends

	Order workflow modules

They may be added as a third party djangoSHOP plugin, or integrated into the merchant’s
implementation.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

2. Unique Features of djangoSHOP

2.1. djangoSHOP requires to describe your products instead of prescribing prefabricated models

Products can vary wildly, and modeling them is not always trivial. Some products are salable in
pieces, while others are continues. Trying to define a set of product models, capable for describing
all such scenarios is impossible – describe your product by customizing the model and not vice
versa.

2.1.1. E-commerce solutions, claiming to be plug-and-play, normally use one of these (anti-)patterns

Either, they offer a field for every possible variation, or they use the Entity-Attribute-Value
pattern to add meta-data for each of your models. This at a first glance seems to be easy. But both
approaches are unwieldy and have serious drawbacks. They both apply a different “physical schema” –
the way data is stored, rather than a “logical schema” – the way users and applications require that
data. As soon as you have to combine your e-commerce solution with some Enterprise-Resource-Planning
software, additional back-and-forward conversion routines have to be added.

2.1.2. In djangoSHOP, the physical representation of a product corresponds to its logical

djangoSHOP‘s approach to this problem is to have minimal set of models. These abstract models
are stubs provided to subclass the physical models. Hence the logical representation of the
product conforms to their physical one. Moreover, it is even possible to represent various types of
products by subclassing polymorphically from an abstract base model. Thanks to the Django framework,
modeling the logical representation for a set of products, together with an administration backend,
becomes almost effortless.

2.2. djangoSHOP is multilingual

Products offered in various regions, normally require attributes in different natural languages.
For such a set of products, these attributes can be easily modelled using translatable fields.
This lets you seamlessly built a multilingual e-commerce site.

2.3. djangoSHOP supports multiple currencies

djangoSHOP is shipped with a set of currency types, bringing their own money arithmetic. This
adds an additional layer of security, because one can not accidentally sum up different currencies.
These money types always know how to represent themselves in different local environments, prefixing
their amount with the correct currency symbol. They also offer the special amount “no price”
(represented by –), which behaves like zero but is handy for gratuitous items.

2.4. djangoSHOP directly plugs into djangoCMS

Product detail pages may use all templatetags from djangoCMS, such as the {% placeholder ... %},
the {% static_placeholder ... %}, or other CMS tags.

djangoSHOP does not presuppose categories to organize product list views. Instead djangoCMS
pages can be specialized to handle product lists via a CMS app. This allows the merchant to organize
products into categories, using the existing page hierarchy from the CMS. It also allows to offer
single products from a CMS page, without requiring any category.

2.5. djangoSHOP is based on REST

	djangoSHOP uses the Django REST framework and hence does not require any Django View

	Every view is based on REST interfaces.

	Infinite scrolling and paginated listings use the same template.

	Views for cart, checkout etc. can be inserted into exiting pages.

	This means that one can navigate through products, add them to the cart, modify the cart, register
himself as new customer (or proceed as guest), add his shipping information, pay via Stripe and
view his past orders. Other Payment Service Providers can be added in a pluggable manner.

Every page in the shop: product-list, product-detail, cart, checkout-page, orders-list, order-detail
etc. is part of the CMS and can be edited through the plugin editor. The communication between the
client and these pages is done exclusively through REST. This has the nice side-effect, that the
merchants shop implementation does not require any Django-View.

djangoSHOP is shipped with individual components for each task. These plugins then can be placed
into any CMS placeholder using the plugin editor. Each of these plugins is shipped with their own
overridable template, which can also be used as a stand-alone template outside of a CMS placeholder.
Templates for bigger tasks, such as the Cart-View are granular, so that the HTML can be overridden
partially.

Authentication is done through auth-rest, which allows to authenticate against a bunch of social
networks, such as Google+, Facebook, GitHub, etc in a pluggable manner.

Moreover, the checkout process is based on a configurable finite state machine, which means that a
merchant can adopt the shops workflow to the way he is used to work offline.

Client code is built using Bootstrap-3.3 and AngularJS-1.3. jQuery is required only for the backends
administration interface. All browser components have been implemented as AngularJS directives, so
that they can be reused between projects. For instance, my current merchant implementation does not
have a single line of customized JavaScript.

This makes is very easy, even for non-programmers, to implement a shop. A merchant only has to adopt
his product models, optionally the cart and order models, and override the templates.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

1. Tutorial

1.1. Introduction

This tutorial is aimed at people new to django SHOP but already familiar with Django. If you aren’t
yet, reading their excellent Django Tutorial [https://docs.djangoproject.com/en/stable/intro/tutorial01/] is highly recommended.

The steps outlined in this tutorial are meant to be followed in order.

1.2. Prepare the Installation

To run the examples shown in this tutorial, you must install django-shop from GitHub, since
the pip-installable from PyPI only contains the main files. Before proceeding, please make sure
virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/] is installed on your system, otherwise you would pollute your Python site-packages
folder.

Also ensure that these packages are installed using the favorite package manager of your operating
system:

	Python 2.7

	Redis: http://redis.io/

	SQLite: https://www.sqlite.org/

	bower: http://bower.io/

	Node Package Manager: https://www.npmjs.com/

	Python 2.7 (Latest minor version recommended)

	Django 1.9 (Latest minor version recommended)

$ virtualenv shoptutorial
$ source shoptutorial/bin/activate
$ mkdir Tutorial; cd Tutorial
(shoptutorial)$ git clone --depth 1 https://github.com/awesto/django-shop
(shoptutorial)$ cd django-shop
(shoptutorial)$ pip install -e .
(shoptutorial)$ pip install -r requirements/tutorial.txt
(shoptutorial)$ npm install
(shoptutorial)$ bower install

these statements will setup an environment, which runs a demo shop out of the box.

You may populate the database with your own products, or if impatient, Quickstart a Running Demo
using prepared CMS page layouts, products and media files.

1.2.1. Create a database for the demo

Finally we must create a database to run our example project:

(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_DEBUG=1
(shoptutorial)$./manage.py migrate
(shoptutorial)$./manage.py createsuperuser
Email address: admin@example.org
Username: admin
Password:
Password (again):
Superuser created successfully.
(shoptutorial)$./manage.py runserver

Finally point a browser onto http://localhost:8000/ and log in as the superuser you just created.

1.3. Add some pages to the CMS

In djangoSHOP, every page, with the exception of the product’s detail pages, can be rendered by
the CMS. Therefore, unless you need a special landing page, start immediately with the Catalog List
View of your products. Change into the Django Admin backend, chose the section

Start > django CMS > Pages

and add a Page. As its Title chose “Smart Cards”. Then change into the Advanced Settings
at the bottom of the page. In this editor window, locate the field Application and select
Products List. Then save the page and click on View on site.

Now change into Structure mode and locate the placeholder named Main content container.
Add a plugin from section Bootstrap named Row. Below that Row add a Column with a width of
12 units. Finally, below the last Column add a plugin from section Shop named Catalog List
View.

Now we have a working catalog list view, but since we havn’t added any products to the database
yet, we won’t see any items on our page.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

2. Quickstart a Running Demo

2.1. Using a Docker image

To get a first impression of the djangoSHOP examples, you may use a prepared Docker container.
If not already available on your workstation, first install the Docker runtime environment [https://docs.docker.com/windows/] and
start a Docker machine.

Now you may run a fully configured djangoSHOP image on your local machine:

docker run -p 9001:9001 jrief/uwsgi-django-shop:latest

This image is rather large (1.7 GB) therefore it may take some time to download.

Locate the IP address of the running container using docker-machine ip default. Then point
a browser onto this address using port 9001, for instance http://192.168.99.100:9001/en/

Please note that before bootstrapping, a full text index is built and the images are thumbnailed.
This takes additional time. Therefore, if you stop the running container, before rerunning the
Docker image it is recommended to restart the container. First locate it using

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
79b7b69a7473 jrief/uwsgi-django-shop:latest "/usr/sbin/uwsgi --in" 11 minutes ago
...
$ docker start 79b7b69a7473

and then restart it. The access the administration backed, sign in as user “admin” with
password “secret”.

Note

This demo does not function with the Payment Service Provider Stripe, because each
merchant requires its own credentials. The same applies for sending emails, because
the application requires an outgoing SMTP server.

2.2. The classic approach

Alternatively you may also download all dependencies and start the project manually. If you want to
use the demo as a starting point, this probably is the better solution.

Filling your CMS with page content and adding products is a boring job. Impatient users may start
three demos using some prepared sample data. First assure that all dependencies are installed
into its virtual environment as described in section “Prepare the Installation”. Then
instead of adding pages and products manually, download the media files [http://downloads.django-shop.org/django-shop-workdir.tar.gz] and unpack them into the
folder django-shop:

(shoptutorial)$ tar zxf DOWNLOAD/FOLDER/django-shop-workdir.tar.gz

Starting from this folder, you can run all three demos: The first, simple demo shows how to setup a
monolingual shop, with one product type. The second, internationalized demo shows how to setup a
multilingual shop, with one product type. For translation of model attributes, this installation
uses the django-parler [http://django-parler.readthedocs.org/en/latest/] app. The third, polymorphic demo shows how to setup a shop with many
different product types. To handle the polymorphism of products, this installation uses the
django-polymorphic [https://django-polymorphic.readthedocs.org/en/latest/] app.

Note

All demos can be started independently from each other, but you are encouraged to start
with the “Simple Product”, and then proceed to the more complicate examples.

2.3. Simple Product Demo

Assure you are in the django-shop folder and using the correct virtual environment. Then in a
shell invoke:

(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_SHOP_TUTORIAL=simple DJANGO_DEBUG=1
(shoptutorial)$./manage.py migrate
(shoptutorial)$./manage.py loaddata fixtures/myshop-simple.json
(shoptutorial)$./manage.py runserver

Point a browser onto http://localhost:8000/admin/ and sign in as user “admin” with password
“secret”.

This runs the demo for Modeling a simple product.

2.4. Internationalized Products

In this demo the description of the products can be translated into different natural languages.

When migrating from the Simple Products demo, assure you are in the django-shop folder and
using the correct virtual environment. Then in a shell invoke:

(shoptutorial)$ cp workdir/db-simple.sqlite3 workdir/db-i18n.sqlite3
(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_SHOP_TUTORIAL=i18n DJANGO_DEBUG=1
(shoptutorial)$./manage.py migrate
(shoptutorial)$./manage.py runserver

Alternatively, if you prefer to start with an empty database, assure that the file
workdir/db-i18n.sqlite3 is missing. Then in a shell invoke:

(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_SHOP_TUTORIAL=i18n DJANGO_DEBUG=1
(shoptutorial)$./manage.py migrate
(shoptutorial)$./manage.py loaddata fixtures/myshop-i18n.json
(shoptutorial)$./manage.py runserver

Point a browser onto http://localhost:8000/admin/ and sign in as user “admin” with password
“secret”.

This runs a demo for Modeling a Multilingual Product.

2.5. Polymorphic Products

In this demo we show how to handle products with different properties and in different natural
languages. This example can’t be migrated from the previous demos, without loosing lots of
information. It is likely that you don’t want to add the Smart Phones manually, it is suggested
to start using a fixture.

This example shows how to add Smart Phones in addition to the existing Smart Cards. Assure you are
in the django-shop folder and using the correct virtual environment. Then in a shell invoke:

(shoptutorial)$ rm workdir/db-polymorphic.sqlite3
(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_SHOP_TUTORIAL=polymorphic
(shoptutorial)$./manage.py migrate
(shoptutorial)$./manage.py loaddata fixtures/myshop-polymorphic.json
(shoptutorial)$./manage.py runserver

Point a browser onto http://localhost:8000/admin/ and sign in as user “admin” with password
“secret”.

This runs a demo for Products with Different Properties.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

3. Modeling a simple product

As a simple example, this tutorial uses Smart Cards as its first product. As emphasized in section
tutorial/customer-model, djangoSHOP is not shipped with ready to use product models.
Instead the merchant must declare these models based on the products properties. Lets have a look
ar a model describing a typical Smart Card:

myshop/models/simple/smartcard.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from djangocms_text_ckeditor.fields import HTMLField
from shop.money.fields import MoneyField
from shop.models.product import BaseProduct, BaseProductManager
from shop.models.defaults.mapping import ProductPage, ProductImage
@python_2_unicode_compatible
class SmartCard(BaseProduct):
 # common product fields
 product_name = models.CharField(max_length=255, verbose_name=_("Product Name"))
 slug = models.SlugField(verbose_name=_("Slug"))
 unit_price = MoneyField(_("Unit price"), decimal_places=3,
 help_text=_("Net price for this product"))
 description = HTMLField(verbose_name=_("Description"),
 images = models.ManyToManyField('filer.Image', through=ProductImage)

Here our model SmartCard inherits directly from BaseProduct, which is a stub class, hence
the most common fields, such as product_name, slug and unit_price must be added to our
product here. Later on we will see why these fields, even though required by each product, can not
be part of our abstract model BaseProduct.

Additionally a smart card has some product specific properties:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 help_text=_("Description for the list view of products."))

 # product properties
 manufacturer = models.ForeignKey(Manufacturer, verbose_name=_("Manufacturer"))
 CARD_TYPE = (2 * ('{}{}'.format(s, t),)
 for t in ('SD', 'SDXC', 'SDHC', 'SDHC II') for s in ('', 'micro '))
 card_type = models.CharField(_("Card Type"), choices=CARD_TYPE, max_length=15)
 SPEED = ((str(s), "{} MB/s".format(s)) for s in (4, 20, 30, 40, 48, 80, 95, 280))
 speed = models.CharField(_("Transfer Speed"), choices=SPEED, max_length=8)
 product_code = models.CharField(_("Product code"), max_length=255, unique=True)
 storage = models.PositiveIntegerField(_("Storage Capacity"),
 help_text=_("Storage capacity in GB"))

these class attributes depend heavily on the data sheet of the product to sell.

Finally we also want to position our products into categories and sort them:

	1
2
3
4
5
6
7

	 help_text=_("Storage capacity in GB"))

 # controlling the catalog
 order = models.PositiveIntegerField(verbose_name=_("Sort by"), db_index=True)
 cms_pages = models.ManyToManyField('cms.Page', through=ProductPage,
 help_text=_("Choose list view this product shall appear on."))
 images = models.ManyToManyField('filer.Image', through=ProductImage)

The field order is used to keep track on the sequence of our products while rendering a list
view.

The field cms_pages specifies on which pages of the CMS a product shall appear.

Note

If categories do not require to keep any technical properties, it often is completely
sufficient to use CMS pages as their surrogates.

Finally images is another many-to-many relation, allowing to associate none, one or more images
to a product.

Both fields cms_pages and images must use the through [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.ManyToManyField.through] parameter. This is because we have
two many-to-many mapping tables which are part of the merchant’s project rather than the
djangoSHOP application. The first of those mapping tables has foreign keys onto the models
cms.Page and myshop.SmartCard. The second table has foreign keys onto the models
filer.Image and myshop.SmartCard again. Since the model myshop.SmartCard has been
declared by the merchant himself, he also is responsible for managing those many-to-many mapping
tables.

Additionally each product model requires these attributes:

	A model field or property method named product_name: It must returns the product’s name in
its natural language.

	A method get_price(request): Returns the product price. This can depend on the given region,
which is available through the request object.

	A method get_absolute_url(): Returns the canonical URL of a product.

	The object attribute must be of type BaseProductManager or derived from thereof.

These product model attributes are optional, but highly recommended:

	A model field or property method named product_code: It shall returns a language independent
product code or article number.

	A property method sample_image: It shall returns a sample image for the given product.

3.1. Add Model myshop.SmartCard to Django Admin

For reasons just explained, it is the responsibility of the project to manage the many-to-many
relations between its CMS pages and the images on one side, and the product on the other side.
Therefore we can’t use the built-in admin widget FilteredSelectMultiple for these relations.

Instead djangoSHOP is shipped with a special mixin class CMSPageAsCategoryMixin, which
handles the relation between CMS pages and the product. This however implies that the field used
to specify this relation is named cms_pages.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from adminsortable2.admin import SortableAdminMixin
from shop.admin.product import CMSPageAsCategoryMixin, ProductImageInline
from myshop.models import SmartCard

@admin.register(SmartCard)
class SmartCardAdmin(SortableAdminMixin, CMSPageAsCategoryMixin, admin.ModelAdmin):
 fieldsets = (
 (None, {
 'fields': ('product_name', 'slug', 'product_code', 'unit_price', 'active', 'description',),
 }),
 (_("Properties"), {
 'fields': ('manufacturer', 'storage', 'card_type', 'speed',)
 }),
)
 inlines = (ProductImageInline,)
 prepopulated_fields = {'slug': ('product_name',)}
 list_display = ('product_name', 'product_code', 'unit_price', 'active',)
 search_fields = ('product_name',)

For images, the admin class must use a special inline class named ProductImageInline. This is
because the merchant might want to arrange the order of the images and therefore a simple
SelectMultiple widget won’t do this job here.

Extend our simple product to support other natural languages by
Modeling a Multilingual Product.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

4. Modeling a Multilingual Product

Let’s extend our previous SmartCard model to internationalize our shop site. Normally the name
of a Smart Card model is international anyway, say “Ultra Plus micro SDXC”, so it probably won’t
make much sense to use a translatable field here. The model attribute which certainly makes sense
to be translated into different languages, is the description field.

4.1. Run the Multilingual Demo

To test this example, set the shell environment variable export DJANGO_SHOP_TUTORIAL=i18n,
then apply the modified models to the database schema:

./manage.py migrate myshop

Alternatively recreate the database as explained in Create a database for the demo.

Afterwards start the demo server:

./manage.py runserver

4.2. The Multilingal Product Model

DjangoSHOP uses the library django-parler [https://github.com/edoburu/django-parler] for model translations. We therefore shall
rewrite our model as:

myshop/models/i18n/smartcard.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	from djangocms_text_ckeditor.fields import HTMLField
from parler.managers import TranslatableManager, TranslatableQuerySet
from parler.models import TranslatableModel, TranslatedFieldsModel
from parler.fields import TranslatedField
from polymorphic.query import PolymorphicQuerySet
from shop.money.fields import MoneyField
from shop.models.product import BaseProductManager, BaseProduct
from shop.models.defaults.mapping import ProductPage, ProductImage
from myshop.models.properties import Manufacturer

class ProductQuerySet(TranslatableQuerySet, PolymorphicQuerySet):
 pass

class ProductManager(BaseProductManager, TranslatableManager):
 queryset_class = ProductQuerySet
@python_2_unicode_compatible
class SmartCard(BaseProduct, TranslatableModel):
 product_name = models.CharField(max_length=255, verbose_name=_("Product Name"))
 slug = models.SlugField(verbose_name=_("Slug"))
 unit_price = MoneyField(_("Unit price"), decimal_places=3,
 help_text=_("Net price for this product"))
 images = models.ManyToManyField('filer.Image', through=ProductImage)

class SmartCardTranslation(TranslatedFieldsModel):
 master = models.ForeignKey(SmartCard, related_name='translations',
 null=True)
 description = HTMLField(verbose_name=_("Description"),
 help_text=_("Description for the list view of products."))

 class Meta:
 unique_together = [('language_code', 'master')]

In comparison to the simple Smart Card model, the field description can now accept text in
different languages.

In order to work properly, a model with translations requires an additional model manager and a
table storing the translated fields. Accessing an instance of this model behaves exactly the same
as an untranslated model. Therefore it can be used as a drop-in replacement for our simple
SmartCard model.

4.3. Translatable model in Django Admin

The admin requires only a small change. Its class must additionally inherit from
TranslatableAdmin. This adds a tab for each configured language to the top of the detail
editor. Therefore it is recommended to group all multilingual fields into one fieldset to emphasize
that these fields are translatable.

myshop/admin/i18n/smartcard.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	from django.contrib import admin
from django.utils.translation import ugettext_lazy as _
from adminsortable2.admin import SortableAdminMixin
from parler.admin import TranslatableAdmin
from shop.admin.product import CMSPageAsCategoryMixin, ProductImageInline
from myshop.models import SmartCard

@admin.register(SmartCard)
class SmartCardAdmin(SortableAdminMixin, TranslatableAdmin,
 CMSPageAsCategoryMixin, admin.ModelAdmin):
 fieldsets = (
 (None, {
 'fields': ('product_name', 'slug', 'product_code', 'unit_price', 'active',),
 }),
 (_("Translatable Fields"), {
 'fields': ('description',)
 }),
 (_("Properties"), {
 'fields': ('manufacturer', 'storage', 'card_type',)
 }),
)
 inlines = (ProductImageInline,)
 prepopulated_fields = {'slug': ('product_name',)}
 list_display = ('product_name', 'product_code', 'unit_price', 'active',)
 search_fields = ('product_name',)

Extend our discrete product type, to polymorphic models which are able to support many different
product types: Products with Different Properties.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

5. Products with Different Properties

In the previous examples we have seen that we can model our products according to their physical
properties, but what if we want to sell another type of a product with different properties. This
is where polymorphism [https://en.wikipedia.org/wiki/Polymorphism_(computer_science)] enters the scene.

5.1. Run the Polymorphic Demo

To test this example, set the shell environment variable export DJANGO_SHOP_TUTORIAL=polymorphic,
then recreate the database as explained in Create a database for the demo and start the demo
server:

./manage.py runserver

5.2. The Polymorphic Product Model

If in addition to Smart Cards we also want to sell Smart Phones, we must declare a new model.
Here instead of duplicating all the common fields, we unify them into a common base class named
Product. Then that base class shall be extended to become either our known model SmartCard
or a new model SmartPhone.

To enable polymorphic models in djangoSHOP, we require the application django-polymorphic [https://django-polymorphic.readthedocs.org/en/latest/].
Here our models for Smart Cards or Smart Phones will be split up into a generic part and a
specialized part. The generic part goes into our new Product model, whereas the specialized
parts remain in their models.

You should already start to think about the layout of the list views. Only attributes in model
Product will be available for list views displaying Smart Phones side by side with Smart Cards.
First we must create a special Model Manager [https://docs.djangoproject.com/en/stable/topics/db/managers/] which unifies the query methods for translatable
and polymorphic models:

myshop/models/i18n/polymorphic/product.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from djangocms_text_ckeditor.fields import HTMLField
from parler.models import TranslatableModel, TranslatedFieldsModel
from parler.fields import TranslatedField
from parler.managers import TranslatableManager, TranslatableQuerySet
from polymorphic.query import PolymorphicQuerySet
from shop.models.product import BaseProductManager, BaseProduct
from shop.models.defaults.mapping import ProductPage, ProductImage
from myshop.models.properties import Manufacturer

class ProductQuerySet(TranslatableQuerySet, PolymorphicQuerySet):
 pass

class ProductManager(BaseProductManager, TranslatableManager):
 queryset_class = ProductQuerySet
@python_2_unicode_compatible
class Product(BaseProduct, TranslatableModel):
 product_name = models.CharField(max_length=255, verbose_name=_("Product Name"))
 slug = models.SlugField(verbose_name=_("Slug"), unique=True)
 description = TranslatedField()

The next step is to identify which model attributes qualify for being part of our Product
model. Unfortunately, there is no silver bullet for this problem and that’s one of the reason why
djangoSHOP is shipped without any prepared model for it. If we want to sell both Smart Cards
and Smart Phones, then this Product model may do its jobs:

myshop/models/i18n/polymorphic/product.py

	1
2
3
4
5
6
7
8
9

	
 # common product properties
 manufacturer = models.ForeignKey(Manufacturer, verbose_name=_("Manufacturer"))

 # controlling the catalog
 order = models.PositiveIntegerField(verbose_name=_("Sort by"), db_index=True)
 cms_pages = models.ManyToManyField('cms.Page', through=ProductPage,
 help_text=_("Choose list view this product shall appear on."))
 images = models.ManyToManyField('filer.Image', through=ProductImage)

5.2.1. Model for Smart Card

The model used to store translated fields is the same as in our last example. The new model for
Smart Cards now inherits from Product:

myshop/models/i18n/polymorphic/smartcard.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from django.db import models
from django.utils.translation import ugettext_lazy as _
from shop.money.fields import MoneyField
from .product import Product

class SmartCard(Product):
 # common product fields
 unit_price = MoneyField(_("Unit price"), decimal_places=3,
 help_text=_("Net price for this product"))

 # product properties
 CARD_TYPE = (2 * ('{}{}'.format(s, t),)
 for t in ('SD', 'SDXC', 'SDHC', 'SDHC II') for s in ('', 'micro '))
 card_type = models.CharField(_("Card Type"), choices=CARD_TYPE, max_length=15)
 SPEED = ((str(s), "{} MB/s".format(s)) for s in (4, 20, 30, 40, 48, 80, 95, 280))
 speed = models.CharField(_("Transfer Speed"), choices=SPEED, max_length=8)
 product_code = models.CharField(_("Product code"), max_length=255, unique=True)
 storage = models.PositiveIntegerField(_("Storage Capacity"),
 help_text=_("Storage capacity in GB"))

5.2.2. Model for Smart Phone

The product model for Smart Phones is intentionally a little bit more complicated. Not only does
it have a few more attributes, but Smart Phones can be sold with different specifications of
internal storage. The latter influences the price and the product code. This is also the reason why
we didn’t move the model fields unit_price and products_code into our base class
Product, although every product in our shop requires them.

When presenting Smart Phones in our list views, we want to focus on different models, but not on
each flavor, ie. its internal storage. Therefore customers will have to differentiate between
the concrete Smart Phone variations, whenever they add them to their cart, but not when viewing them
in the catalog list. For a customer, it would be very boring to scroll through lists with many
similar products, which only differentiate by a few variations.

This means that for some Smart Phone models, there is be more than one Add to cart button.

When modeling, we therefore require two different classes, one for the Smart Phone model and one
for each Smart Phone variation.

myshop/models/polymorphic/smartphone.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	from shop.money import Money, MoneyMaker
from shop.money.fields import MoneyField
from .product import Product

class SmartPhoneModel(Product):
 """
 A generic smart phone model, which must be concretized by a model `SmartPhone` - see below.
 """
 BATTERY_TYPES = (
 (1, "Lithium Polymer (Li-Poly)"),
 (2, "Lithium Ion (Li-Ion)"),
)
 WIFI_CONNECTIVITY = (
 (1, "802.11 b/g/n"),
)
 BLUETOOTH_CONNECTIVITY = (
 (1, "Bluetooth 4.0"),
)
 battery_type = models.PositiveSmallIntegerField(_("Battery type"),
 choices=BATTERY_TYPES)
 battery_capacity = models.PositiveIntegerField(_("Capacity"),
 help_text=_("Battery capacity in mAh"))
 ram_storage = models.PositiveIntegerField(_("RAM"),
 help_text=_("RAM storage in MB"))
 wifi_connectivity = models.PositiveIntegerField(_("WiFi"),
 choices=WIFI_CONNECTIVITY, help_text=_("WiFi Connectivity"))
 bluetooth = models.PositiveIntegerField(_("Bluetooth"),
 choices=BLUETOOTH_CONNECTIVITY,
 help_text=_("Bluetooth Connectivity"))

Here the method get_price() can only return the minimum, average or maximum price for our
product. In this situation, most merchants extol the prices as: Price starting at € 99.50.

The concrete Smart Phone then is modeled as:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	class SmartPhone(models.Model):
 product = models.ForeignKey(SmartPhoneModel,
 verbose_name=_("Smart-Phone Model"))
 product_code = models.CharField(_("Product code"),
 max_length=255, unique=True)
 unit_price = MoneyField(_("Unit price"), decimal_places=3,
 help_text=_("Net price for this product"))
 storage = models.PositiveIntegerField(_("Internal Storage"),
 help_text=_("Internal storage in MB"))

To proceed with purchasing, customers need some Cart and Checkout pages.

5.2.3. Model for a generic Commodity

For demo purposes, this polymorphic example adds another kind of Product model, a generic Commodity.
Here instead of adding every possible attribute of our product to the model, we try to remain as
generic as possible, and instead use a PlaceholderField as provided by djangoCMS.

This allows us to add any arbitrary information to our product’s detail page. The only requirement
for this to work is, that the rendering template adds a templatetag to render this placeholder.

Since the djangoSHOP framework looks in the folder catalog for a template named after its
product class, adding this HTML snippet should do the job:

This detail template extends the default template of our site. Apart from the product’s name (which
has added as a convenience), this view remains empty when first viewed. In Edit mode, double
clicking on the heading containing the product name, opens the detail editor for our commodity.

After switching into Structure mode, a placeholder named Commodity Details appears. Here we
can add as many Cascade plugins as we want, by subdividing our placeholder into rows, columns,
images, text blocks, etc. It allows us to edit the detail view of our commodity in whatever layout
we like. The drawback using this approach is, that it can lead to inconsistent design and is much
more labor intensive, than just editing the product’s attributes together with their appropriate
templates.

5.2.3.1. Configure the Placeholder

Since we use this placeholder inside a hard-coded Bootstrap column, we must provide a hint to
Cascade about the widths of that column. This has to be done in the settings of the project:

This placeholder configuration emulates the Bootstrap column as declared by
<div class="col-xs-12">.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

6. Catalog Views

Now that we know how to create product models and how to administer them, lets have a look on how
to route them to our views.

When editing the CMS page used for the products list view, open Advanced Settings and chose
Products List from the select box labeled Application.

Then chose a template with at least one placeholder [http://django-cms.readthedocs.org/en/latest/introduction/templates_placeholders.html#placeholders]. Click onto View on site to change into
front-end editing mode. Locate the main placeholder and add a Row followed by a Column
plugin from the section Bootstrap. Below that column add a Catalog List Views plugin from
section Shop. Then publish the page, it should not display any products yet.

6.1. Add products to the category

Open the detail view of a product in Django’s administration backend. Locate the many-to-many
select box labeled Categories > Cms pages. Select the pages where each product shall appear
on.

On reloading the list view, the assigned products now shall be visible. Assure that they have been
set to be active, otherwise they won’t show up.

If you nest categories, products assigned to children will be also be visible on their parents
pages.

6.1.1. Product Model Serializers

We already learned how to write model classes and model managers, so what are serializers for?

In djangoSHOP the response views do not distinguish whether the product’s information shall
be rendered as HTML or transferred via JSON. This gives us the ability to use the same business
logic for web browsers rendering static HTML, single page web applications communicating via AJAX
or native shopping applications for your mobile devices. This btw. is one of the great benefits
when working with RESTful [https://en.wikipedia.org/wiki/Representational_state_transfer] API’s and thanks to the djangorestframework [http://www.django-rest-framework.org/] we don’t even have to
write any Django Views anymore.

For instance, try to open the list- or the detail view of any of the products available in the
shop. Then in the browsers URL input field append ?format=api or ?format=json to the URL.
This will render the pure product information, but without embedding it into HTML.

The REST API view is very handy while developing. If you want to hide this on your production
system , then in your settingy.py remove 'rest_framework.renderers.BrowsableAPIRenderer' from
REST_FRAMEWORK['DEFAULT_RENDERER_CLASSES'].

In the shop’s catalog, we need some functionality to render a list view for all products and
we need a detail view to render each product type. The djangoSHOP framework supplies two
such serializers:

6.2. Serialize for the Products List View

For each product we want to display in a list view, we need a serializer which converts the content
of the most important fields of a product. Normally these are the Id, the name and price, the URL
onto the detail view, a short description and a sample image.

The djangoSHOP framework does not know which of those fields have to be serialized, therefore
it requires some help from the programmer:

myshop/product_serializers.py

	1
2
3
4
5
6
7
8

	from shop.rest.serializers import ProductSummarySerializerBase
from myshop.models.polymorphic.product import Product

class ProductSummarySerializer(ProductSummarySerializerBase):
 class Meta:
 model = Product
 fields = ('id', 'product_name', 'product_url',
 'product_type', 'product_model', 'price')

All these fields can be extracted directly from the product model with the exception of the sample
image. This is because we yet do not know the final dimensions of the image inside its HTML element
such as , and we certainly want to resize it using PIL/Pillow before it is
delivered. An easy way to solve this problem is to use the SerializerMethodField. Simply extend
the above class to:

	1
2
3
4
5
6
7

	from rest_framework.serializers import SerializerMethodField

class ProductSummarySerializer(ProductSummarySerializerBase):
 media = SerializerMethodField()

 def get_media(self, product):
 return self.render_html(product, 'media')

As you might expect, render_html assigns a HTML snippet to the field media in the serialized
representation of our product. This method uses a template to render the HTML. The name of this
template is constructed using the following rules:

	Look for a folder named according to the project’s name, ie. settings.SHOP_APP_LABEL in lower
case. If no such folder can be found, then use the folder named shop.

	Search for a subfolder named products.

	Search for a template named “label-product_type-postfix.html”. These three subfieds are
determined using the following rule:
* label: the component of the shop, for instance catalog, cart, order.
* product_type: the class name in lower case of the product’s Django model, for instance
smartcard, smartphone or if no such template can be found, just product.
* postfix: This is an arbitrary name passed in by the rendering function. As in the example
above, this is the string media.

Note

It might seem “un-restful” to render HTML snippets by a REST serializer and deliver them
via JSON to the client. However, we somehow must re-size the images assigned to our product to
fit into the layout of our list view. The easiest way to do this in a configurable manner is
to use the easythumbnails [http://easy-thumbnails.readthedocs.org/] library and its templatetag {% thumbnail product.sample_image ... %}.

The template to render the media snippet could look like:

myshop/products/catalog-smartcard-media.html

{% load i18n thumbnail djng_tags %}
{% thumbnail product.sample_image 100x100 crop as thumb %}

The template of the products list view then may contain a list iteration such as:

{% for product in data.results %}
 <div class="shop-list-item">

 <h4>{{ product.product_name }}</h4>
 {{ product.media }}
 {% trans "Price" %}: {{ product.price }}

 </div>
{% endfor %}

The tag {{ product.media }} inserts the HTML snippet as prepared by the serializer from above.
A serializer may add more than one SerializerMethodField. This can be useful, if the list view
shall render different product types using different snippet templates.

6.3. Serialize for the Product’s Detail View

The serializer for the Product’s Detail View is very similar to its List View serializer. In the
example as shown below, we even reverse the field listing by explicitly excluding the fields we’re
not interested in, rather than naming the fields we want to include. This for the product’s detail
view makes sense, since we want to expose every possible detail.

	1
2
3
4
5
6

	from shop.rest.serializers import ProductDetailSerializerBase

class ProductDetailSerializer(ProductDetailSerializerBase):
 class Meta:
 model = Product
 exclude = ('active',)

6.4. The AddToCartSerializer

Rather than using the detail serializer, the business logic for adding a product to the cart has
been moved into a specialized serializer. This is because djangoSHOP can not presuppose that
products are added to the cart only from within the detail view[#add2cart]_. We also need a way to
add more than one product variant to the cart from each products detail page.

For this purpose djangoSHOP is shipped with an AddToCartSerializer. It can be overridden
for special product requirements, but for a standard application it just should work out of the box.

Assure that the context for rendering a product contains the key product referring to the
product object. The ProductDetailSerializer does this by default. Then add

{% include "shop/catalog/product-add2cart.html" %}

to an appropriate location in the template which renders the product detail view.

The now included add-to-cart template contains a form with some input fields and a few AngularJS
directives, which communicate with the endpoint connected to the AddToCartSerializer. It
updates the subtotal whenever the customer changes the quantity and displays a nice popup window,
whenever an item is added to the cart. Of course, that template can be extended with arbitrary HTML.

These Angular JS directives require some JavaScript code which is located in the file
shop/js/catalog.js; it is referenced automatically when using the above template include
statement.

	[1]	Specially in business-to-business sites, this usually is done in the list views.

6.4.1. Connect the Serializers with the View classes

Now that we declared the serializers for the product’s list- and detail view, the final step is to
access them through a CMS page. Remember, since we’ve chosen to use CMS pages as categories, we had
to set a special djangoCMS apphook [http://docs.django-cms.org/en/latest/how_to/apphooks.html]:

myshop/cms_app.py

	1
2
3
4
5
6
7
8

	from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

class ProductsListApp(CMSApp):
 name = _("Products List")
 urls = ['myshop.urls.products']

apphook_pool.register(ProductsListApp)

This apphook points onto a list of boilerplate code containing these urlpattern:

myshop/urls/products.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from django.conf.urls import patterns, url
from rest_framework.settings import api_settings
from shop.rest.filters import CMSPagesFilterBackend
from shop.rest.serializers import AddToCartSerializer
from shop.views.catalog import (CMSPageProductListView,
 ProductRetrieveView, AddToCartView)

urlpatterns = patterns('',
 url(r'^$', CMSPageProductListView.as_view(
 serializer_class=ProductSummarySerializer,
)),
 url(r'^(?P<slug>[\w-]+)$', ProductRetrieveView.as_view(
 serializer_class=ProductDetailSerializer
)),
 url(r'^(?P<slug>[\w-]+)/add-to-cart', AddToCartView.as_view()),
)

These URL patterns connect the product serializers with the catalog views in order to assign them
an endpoint. Additional note: The filter class CMSPagesFilterBackend is used to restrict
products to specific CMS pages, hence it can be regarded as the product categoriser.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

7. Cart and Checkout

In djangoSHOP, the cart and checkout view follow the same idea as all other pages – they are
managed by the CMS. Change into the Django admin backend and look for the CMS page tree. A good
position for adding a page is the root level, but then assure that in Advanced Setting the checkbox
Soft root is set.

The checkout my or be combined with the cart on the same page, or moved on a separate page. Its best
position normally is just below the Cart page.

[image: static-cart]

The Checkout pages presumably are the most complicated page to setup. Therefore no generic receipt
can be presented here. Instead some CMS plugins will be listed here. They can be useful to compose
a complete checkout page. In the reference section it is shown in detail how to create a
Cart and Checkout view, but for this tutorial the best way to proceed is to have a look
in the prepared demo project for the Cart and Checkout pages.

A list of plugins specific to djangoSHOP can be found in the reference section. They include
a cart editor, a static cart renderer, forms to enter the customers names, addresses, payment- and
shipping methods, credit card numbers and some more.

Other useful plugins can be found in the Django application djangocms-cascade [http://djangocms-cascade.readthedocs.org/en/latest/].

7.1. Scaffolding

Depending on who is allowed to buy products, keep in mind that pure visiting customers must
declare themselves, whether they want to buy as guests or as registered users. This means that
we first must distinguish between pure visitors and recognized customers. The simplest way to do
this is to use the Segmentation if- and else-plugins. A recognized customer shall
be able to proceed directly to the purchasing page. A visiting customer first must declare himself,
this could be handled with a collections of plugins, such as:

[image: checkout-visitor]

in structure mode. This collection of plugins then will be rendered as:

[image: checkout-register]

Please note that the Authentication plugins Login & Reset, Register User and
Continue as guest must reload the current page. This is because during these steps a new
session-id is assigned, which is requires a full page reload.

After reloading the page, the customer is considered as “recognized”. Since there are a few forms
to be filled, this example uses a Process Bar plugin, which emulates a few sub-pages, which then
can be filled out by the customer step-by-step.

[image: checkout-recognized]

A fragment of this collection of plugins then will be rendered as:

[image: checkout-checkout]

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

1. Customer Model

Most web applications distinguish logged in users explicitly from the anonymous site visitor,
which is regarded as a non-existing user, and thus does not reference a session- or database
entity. The Django framework, in this respect, is no exception.

This pattern is fine for web-sites, which run a Content Management System or a Blog, where only an
elected group of staff users shall be permitted to access. This approach also works for
web-services, such as social networks or Intranet applications, where visitors have to authenticate
right from the beginning.

But when running an e-commerce site, this use-pattern has serious drawbacks. Normally, a visitor
starts to look for interesting products, hopefully adding a few of them to their cart. Then on the
way to the checkout, they decide whether to create a user account, use an existing one or continue
as guest. Here’s where things get complicated.

First of all, for non-authenticated site visitors, the cart does not belong to anybody. But each
cart must be associated with its site visitor, hence the generic anonymous user object is not
appropriate for this purpose. Unfortunately the Django framework does not offer an explicit but
anonymous user object based on its session-Id.

Secondly, at the latest when the cart is converted into an order, but the visitor wants to continue
as guest (thus remaining anonymous), that order object must refer to a User object in the
database. These kind of users would be regarded as fakes, unable to log in, reset their password,
etc. The only information which must be stored for such a faked User, is their email address
otherwise they couldn’t be informed, whenever the state of their order changes.

Django does not explicitly allow such User objects in its database models. But by using the boolean
flag is_active, we can fool an application to interpret such guest visitors as a faked
anonymous users.

However, since such an approach is unportable across all Django based applications, djangoSHOP
introduces a new database model – the Customer model, which extends the existing User model.

1.1. Properties of the Customer Model

The Customer model has a 1:1 relation to the existing User model, which means that for each
customer, there always exists one and only one user object. This approach allows us to do a few
things:

The built-in User model can be swapped out and replaced against another implementation. Such an
alternative implementation has a small limitation. It must inherit from
django.contrib.auth.models.AbstractBaseUser and from django.contrib.auth.models.PermissionMixin.
It also must define all the fields which are available in the default model as found in
django.contrib.auth.models.User.

By setting the flag is_active = False, we can create guests inside Django’s User model.
Guests can not sign, they can not reset their password, and can thus be considered as “materialized”
anonymous users.

Having guests with an entry in the database, gives us another advantage: By using the session key
of the site visitor as the User object’s username, it is possible to establish a link between a
User object in the database with an otherwise anonymous visitor. This further allows the Cart and
the Order models always refer to the User model, since they don’t have to care about whether a
certain User authenticated himself or not. It also keeps the workflow simple, whenever an anonymous
User decides to register and authenticate himself in the future.

1.2. Adding the Customer model to our application

As almost all models in djangoSHOP, the Customer model uses itself the
Deferred Model Pattern. This means that the Django project is responsible for
materializing that model and additionally allows the merchant to add arbitrary fields to this
Customer model. Good choices are a phone number, a boolean to signal whether the customer shall
receive newsletters, his rebate status, etc.

The simplest way is to materialize the given convenience class in our project’s models.py:

from shop.models.defaults.customer import Customer

or, if we need extra fields, then instead of the above, we write:

from shop.models.customer import BaseCustomer

class (BaseCustomer):
 birth_date = models.DateField("Date of Birth")
 # other customer related fields

1.2.1. Configure the Middleware

A Customer object is created automatically with each visitor accessing the site. Whenever Django’s
internal AuthenticationMiddleware [https://docs.djangoproject.com/en/stable/ref/middleware/#django.contrib.auth.middleware.AuthenticationMiddleware] adds an AnonymousUser to the request object, djangoSHOP’s
CustomerMiddleware adds a VisitingCustomer to the request object as well. Neither the
AnonymousUser nor the VisitingCustomer are stored inside the database.

Whenever the AuthenticationMiddleware adds an instantiated User to the request object,
djangoSHOP’s CustomerMiddleware adds an instantiated Customer to the request object
as well. If no associated Customer exists yet, the CustomerMiddleware creates one.

Therefore add the CustomerMiddleware after the AuthenticationMiddleware in the project’s
settings.py:

MIDDLEWARE_CLASSES = (
 ...
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'shop.middleware.CustomerMiddleware',
 ...
)

1.2.2. Configure the Context Processors

Additionally, some templates may need to access the customer object through the RequestContext.
Therefore, add this context processor to the settings.py of the project.

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'shop.context_processors.customer',
 ...
)

1.2.3. Implementation Details

The Customer model has a non-nullable one-to-one relation to the User model. Hence each Customer is
associated with exactly one User. For instance, accessing the hashed password can be achieved
through customer.user.password. Some common fields and methods from the User model, such as
first_name, last_name, email, is_anonymous() and is_authenticated() are
accessible directly, when working with a Customer object. Saving an instance of type Customer also
invokes the save() method from the associated User model.

The other direction – accessing the Customer model from a User – does not always work. Accessing
an attribute that way fails if the corresponding Customer object is missing, ie. if there is no
reverse relation from a Customer pointing onto the given User object.

>>> from django.contrib.auth import get_user_model
>>> user = get_user_model().create(username='bobo')
>>> print user.customer.salutation
Traceback (most recent call last):
 File "<console>", line 1, in <module>
 File "django/db/models/fields/related.py", line 206, in __get__
 self.related.get_accessor_name()))
DoesNotExist: User has no customer.

This can happen for User objects added manually or by other applications.

During database queries, djangoSHOP always performs and INNER JOIN between the Customer and the
User table. Therefore it performs better to query the User via the Customer object, rather than vice
versa.

1.2.4. Anonymous Users and Visiting Customers

Most requests to our site will be of anonymous nature. They will not send a cookie containing a
session-Id to the client, and the server will not allocate a session bucket. The middleware adds
a VisitingCustomer object associated with an AnonymousUser object to the request. These
two objects are not stored inside the database.

Whenever such an anonymous user/visiting customer adds the first item to the cart, djangoSHOP
instantiates a User object in the database and associates it with a Customer object. Such a
Customer is considered as “unregistered” and invoking customer.is_authenticated() will return
False; its associated User model is inactive and has an unusable password.

1.2.5. Guests and Registered Customers

On the way to the checkout, a customer must declare himself, whether to continue as guest, to
sign in using an existing account or to register himself with a new account. In the former case
(customer wishes to proceed as guest), the User object remains as it is: Inactive and with an
unusable password. In the second case, the visitor signs in using Django’s default authentication
backends. Here the cart’s content is merged with the already existing cart of that user object.
In the latter case (customer registers himself), the user object is recycled and becomes an active
Django User object, with a password and an email address.

1.2.6. Obviate Criticism

Some may argue that adding unregistered and guest customers to the User table is an anti-pattern or
hack. So, what are the alternatives?

We could keep the cart of anonymous customers in the session store. This was the procedure used
until djangoSHOP version 0.2. It however required to keep two different models of the cart,
one session based and one relational. Not very practical, specially if the cart model should be
overridable by the merchant’s own implementation.

We could associate each cart models with a session id. This would require an additional field which
would be NULL for authenticated customers. While possible in theory, it would require a lot of code
which distinguishes between anonymous and authenticated customers. Since the aim of this software is
to remain simple, this idea was dismissed.

We could keep the primary key of each cart in the session associated with the customer. But this
would it make very hard to find expired carts, because we would have to iterate over all carts and
for each cart we would have to iterate over all sessions to check if the primary keys matches.
Remember, there is no such thing as an OUTER JOIN between sessions and database tables.

We could create a customer object which is independent of the user. Hence instead of having a
OneToOneField(AUTH_USER_MODEL) in model Customer, we’d have this 1:1 relation with a
nullable foreign key. This would require an additional field to store the session id in the customer
model. It also would require an additional email field, if we wanted a guest customers to remain
anonymous users – what they actually are, since they can’t sign in. Apart from field duplication,
this approach would also require some code to distinguish between unrecognized, guest and
registered customers. In addition to that, the administration backend would require two
distinguished views, one for the customer model and one for the user model.

1.3. Authenticating against the Email Address

Nowadays it is quite common, to use the email address for authenticating, rather than an explicit
account identifier. This in Django is not possible without replacing the built-in User model.
Since for an e-commerce site this authentication variant is rather important, djangoSHOP is
shipped with an optional drop-in replacement for the built-in User model.

This convenience User model is almost a copy of the existing User model as found in
django.contrib.auth.models.py, but it uses the field email rather than username for
looking up the credentials. To activate this alternative User model, add to the project’s
settings.py:

INSTALLED_APPS = (
 'django.contrib.auth',
 'email_auth',
 ...
)

AUTH_USER_MODEL = 'email_auth.User'

Note

This alternative User model uses the same database table as the Django authentication
would, namely auth_user. It is even field-compatible with the built-in model and hence
can be added later to an existing Django project.

1.3.1. Caveat when using this alternative User model

The savvy reader may have noticed that in email_auth.models.User, the email field is not
declared as unique. This by the way causes Django to complain during startup with:

WARNINGS:
email_auth.User: (auth.W004) 'User.email' is named as the 'USERNAME_FIELD', but it is not unique.
 HINT: Ensure that your authentication backend(s) can handle non-unique usernames.

This warning can be silenced by adding SILENCED_SYSTEM_CHECKS = ['auth.W004'] to the project’s
settings.py.

The reason for this is twofold:

First, Django’s default user model has no unique constraint on the email field, so email_auth
remains more compatible.

Second, the uniqueness is only required for users which actually can sign in. Guest users on the
other hand can not sign in, but they may return someday. By having a unique email field, the Django
application email_auth would lock them out and guests would be allowed to buy only once, but
not a second time – something we certainly do not want!

Therefore djangoSHOP offers two configurable options:

	Customers can declare herself as guests, each time they buy something. This is the default, but
causes to have non-unique email addresses in the database.

	Customer can declare themselves as guests the first time they buys something. If someday they buy
again, they will be recognized as returning customer and must use a form to reset their password.
This configuration can be activated with SHOP_GUEST_IS_ACTIVE_USER = True in the project’s
settings.py. This allows us, to set a unique constraint on the email field.

Note

The email field from Django’s built-in User model has a max-length of 75 characters. This
is enough for most use-cases but violates RFC-5321 [http://tools.ietf.org/html/rfc5321#section-4.5.3], which requires 254 characters. The
alternative implementation uses the correct max-length.

1.3.2. Administration of Users and Customers

By keeping the Customer and the User model tight together, it is possible to reuse the Django’s
administration backend for both of them. All we have to do is to import and register the
Customer backend inside the project’s admin.py:

from django.contrib import admin
from shop.admin.customer import CustomerProxy, CustomerAdmin

admin.site.register(CustomerProxy, CustomerAdmin)

This administration backend recycles the built-in django.contrib.auth.admin.UserAdmin, and
enriches it by adding the Customer model as a StackedInlineAdmin on top of the detail page.
By doing so, we can edit the Customer and User fields on the same page.

1.4. Summary for Customer to User mapping

This table summarizes to possible mappings between a Django User Model [1] and the Shop’s Customer
model:

	Shop’s Customer Model
	Django’s User Model
	Active Session

	VisitingCustomer object
	AnonymousUser object
	No

	Unrecognized Customer
	Inactive User object with unusable
password
	Yes, but not
logged in

	Customer recognized as guest [2]
	Inactive User with valid email address
but unusable password
	Yes, but not
logged in

	Customer recognized as guest [3]
	Active User with valid email address
and unknown, but resetable password
	Yes, but not
logged in

	Registered Customer
	Active User with valid email address,
known password, optional salutation,
first- and last names
	Yes, logged in
using Django’s
authentication
backend

	[1]	or any alternative User model, as set by AUTH_USER_MODEL.

	[2]	if setting SHOP_GUEST_IS_ACTIVE_USER = False (the default).

	[3]	if setting SHOP_GUEST_IS_ACTIVE_USER = True.

1.4.1. Manage Customers

djangoSHOP is shipped with a special management command which informs the merchant about the
state of customers. In the project’s folder, invoke on the command line:

./manage.py shop_customers
Customers in this shop: total=20482, anonymous=17418, expired=10111, active=1068, guests=1997, registered=1067, staff=5.

Read these numbers as:
* Anonymous customers are those which added at least one item to the cart, but never proceeded to checkout.
* Expired customers are the subset of the anonymous customers, whose session already expired.
* The difference between guest and registered customers is explained in the above table.

1.4.1.1. Delete expired customers

By invoking on the command line:

./manage.py shop_customers --delete-expired

This removes all anonymous/unregistered customers and their associated user entities from the
database, whose session expired. This command may be used to reduce the database storage
requirements.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

2. Deferred Model Pattern

Until djangoSHOP version 0.2, there were abstract and concrete and models: BaseProduct and
Product, BaseCart and Cart, BaseCartItem and CartItem, BaseOrder and
Order and finally, BaseOrderItem and OrderItem.

The concrete models were stored in shop.models, whereas abstract models were stored in
shop.models_bases. This was quite confusing and made it difficult to find the right model
definition whenever one had to access the definition of one of the models.
Additionally, if someone wanted to subclass a model, he had to use a configuration directive, say
PRODUCT_MODEL, ORDER_MODEL, ORDER_MODEL_ITEM from the projects settings.py.

This made configuration quite complicate and causes other drawbacks:

	Unless all models have been overridden, the native ones appeared in the administration backend
below the category Shop, while the customized ones appeared under the given project’s name.
To merchants, this inconsistency in the backend was quite difficult to explain.

	In the past, mixing subclassed with native models caused many issues with circular dependencies.

Therefore in djangoSHOP, since version 0.9 all concrete models, Product, Order,
OrderItem, Cart, CartItem have been removed. These model definitions now all are
abstract and named BaseProduct, BaseOrder, BaseOrderItem, etc. They all have been moved
into the folder shop/models/, because that’s the location a programmer expects them.

2.1. Materializing Models

Materializing such an abstract base model, means to create a concrete model with an associated
database table. This model creation is performed in the concrete project implementing the shop;
it must be done for each base model in the shop software.

For instance, materialize the cart by using this code snippet inside our own shop’s
models/shopmodels.py files:

from shop.models import cart

class Cart(cart.BaseCart):
 my_extra_field = ...

 class Meta:
 app_label = 'my_shop'

class CartItem(cart.BaseCartItem):
 other_field = ...

 class Meta:
 app_label = 'my_shop'

Of course, we can add as many extra model fields to this concrete cart model, as we wish.
All shop models, now are managed through our project instance. This means that the models
Cart, Order, etc. are now managed by the common database migrations tools, such as
./manage.py makemigration my_shop and ./manage.py migrate my_shop. This
also means that these models, in the Django admin backend, are visible under my_shop.

2.1.1. Use the default Models

Often we don’t need extra fields, hence the abstract shop base model is enough. Then,
materializing the models can be done using some convenience classes as found in
shop/models/defaults. We can simply import them into models.py or models/__init__.py in
our own shop project:

from shop.models.defaults.cart import Cart # nopyflakes
from shop.models.defaults.cart_item import CartItem # nopyflakes

Note

The comment nopyflakes has been added to suppress warnings, since these classes
arern’t used anywhere in models.py.

All the configuration settings from djangoSHOP <0.9: PRODUCT_MODEL, ORDER_MODEL,
ORDER_MODEL_ITEM, etc. are not required anymore and can safely be removed from our
settings.py.

2.2. Accessing the deferred models

Since models in djangoSHOP are yet unknown during instantiation, one has to access their
materialized instance using the lazy object pattern. For instance in order to access the Cart,
use:

from shop.models.cart import CartModel

def my_view(request):
 cart = CartModel.objects.get_from_request(request)
 cart.items.all() # contains the queryset for all items in the cart

Here CartModel is a lazy object resolved during runtime and pointing on the materialized, or,
to say it in other words, real Cart model.

2.3. Technical Internals

2.3.1. Mapping of Foreign Keys

One might argue, that this can’t work, since foreign keys must refer to a real model, not to
abstract ones! Therefore one can not add a field ForeignKey, OneToOneField or
ManyToManyField which refers an abstract model in the djangoSHOP project. But
relations are fundamental for a properly working software. Imagine a CartItem without a foreign
relation to Cart.

Fortunately there is a neat trick to solve this problem. By deferring the mapping onto a real model,
instead of using a real ForeignKey, one can use a special “lazy” field, declaring a relation
with an abstract model. Now, whenever the models are “materialized”, then these abstract relations
are converted into real foreign keys. The only drawback for this solution is, that one may derive
from an abstract model only once, but for djangoSHOP that’s a non-issue and doesn’t differ from
the current situation, where one can subclass BaseCart only once anyway.

Therefore, when using this deferred model pattern, instead of using models.ForeignKey,
models.OneToOneField or models.ManyToManyField, use the special fields
deferred.ForeignKey, deferred.OneToOneField and deferred.ManyToManyField. When
Django materializes the model, these deferred fields are resolved into real foreign keys.

2.3.2. Accessing the materialized model

While programming with abstract model classes, sometimes they must access their model manager
or their concrete model definition. A query such as BaseCartItem.objects.filter(cart=cart)
therefore can not function and will throw an exception. To facilitate this, the deferred model’s
metaclasses adds an additional member _materialized_model to their base class, while building
the model class. This model class then can be accessed through lazy evaluation, using CartModel,
CartItemModel, OrderModel, OrderItemModel, etc.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

3. Money Types

Until djangoSHOP version 0.2, amounts relating to money were kept inside a Decimal type
and stored in the database model using a DecimalField. In shop installations with only one
available currency, this wasn’t a major issue, because the currency symbol could be hard-coded
anywhere on the site.

However, for sites offering pricing information in more than one currency, this caused major
problems. When we needed to perform calculations with amounts that have an associated currency,
it is very common to make mistakes by mixing different currencies. It also is common to perform
incorrect conversions that generate wrong results. Python doesn’t allow developers to associate a
specific decimal value with a unit.

Starting with version 0.3.0, djangoSHOP now is shipped with a special factory class:

3.1. MoneyMaker

This class can not be instantiated, but is a factory for building a money type with an associated
currency. Internally it uses the well established Decimal type to keep track of the amount.
Additionally, it restricts operations on the current Money type. For instance, we can’t sum up
Dollars with Euros. We also can’t multiply two currencies with each other.

3.1.1. Not a Number

In special occurrences we’d rather want to specify “no amount” rather than an amount of 0.00 (zero).
This can be useful for free samples, or when an item is currently not available. The Decimal type
denotes a kind of special value a NaN – for “Not a Number”. Our Money type also knows about
this special value, and when rendered, € – is printed out.

Declaring a Money object without a value, say m = Money() creates such a special value. The big
difference as for the Decimal type is that when adding or subtracting a NaN to a valid
value, it is considered zero, rather than changing the result of this operation to NaN.

It also allows us to multiply a Money amount with None. The result of this operation is NaN.

3.1.2. Create a Money type

>>> from shop.money_maker import MoneyMaker
>>> Money = MoneyMaker()
>>> print Money('1.99')
€ 1.99

>>> print Money('1.55') + Money('8')
€ 9.55

>>> print Money
<class 'shop.money.money_maker.MoneyInEUR'>

>>> Yen = MoneyMaker('JPY')
>>> print Yen('1234.5678')
¥ 1235

>>> print Money('100') + Yen('1000')
ValueError: Can not add/substract money in different currencies.

How does this work?

By calling MoneyMaker() a type accepting amounts in the default currency is created.
The default currency can be changed in settings.py with SHOP_DEFAULT_CURRENCY = 'USD',
using one of the official ISO-4217 currency codes.

Alternatively, we can create our own Money type, for instance Yen.

3.1.3. Formating Money

When the amount of a money type is printed or forced to text using str(price), it is prefixed
by the currency symbol. This is fine, when working with only a few currencies. However, some symbols
are ambiguous, for instance Canadian, Australian and US Dollars, which all use the “$” symbol.

With the setting SHOP_MONEY_FORMAT we can style how money is going to be printed out. This
setting defaults to {symbol} {amount}. The following format strings are allowed:

	{symbol}: The short symbol for a currency, for instance $, £, €, ¥, etc.

	{code}: The international currency code, for instance USD, GBP, EUR, JPY, etc.

	{currency}: The spoken currency description, for instance “US Dollar”, “Pound Sterling”, etc.

	{amount}: The amount, unlocalized.

Thus, if we prefer to print 9.98 US Dollar, then we should set {amount} {currency} as the
formatting string.

3.2. Localizing Money

Since the Money class doesn’t know anything about our current locale setting, amounts always are
printed unlocalized. To localize a Money type, use django.utils.numberformat.format(someamount).
This function will return the amount, localized according to the current HTTP request.

3.3. Money Database Fields

Money can be stored in the database, keeping the currency information together with the field type.
Internally, the database uses the Decimal type, but such a field knows its currency and will return
an amount as MoneyIn... type. This prevents implicit, but accidental currency conversions.

In our database model, declare a field as:

class Product(models.Model):
 ...
 unit_price = MoneyField(currency='GBP')

This field stores its amounts as British Pounds and returns them typed as MoneyInGBP.
If the currency argument is omitted, then the default currency is used.

3.4. Money Representation in JSON

An additional REST SerializerField has been added to convert amounts into JSON strings. When
writing REST serializers, use:

from rest_framework import serializers
from shop.money.rest import MoneyField

class SomeSerializer(serializers.ModelSerializer):
 price = MoneyField()

The default REST behavior serializes Decimal types as floats. This is fine if we want to do some
computations in the browser using JavaScript. However, then the currency information is lost and
must be re-added somehow to the output strings. It also is a bad idea to do commercial calculations
using floats, yet JavaScript does not offer any Decimal-like type. I therefore recommend to always
do the commerce calculations on the server and transfer amount information using JSON strings.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

4. Product Models

Products can vary wildly, and modeling them is not always trivial. Some products are salable in
pieces, while others are continues. Trying to define a set of product models, capable for describing
all such scenarios is impossible –

4.1. Describe Products by customizing the Model

DjangoSHOP requires to describe products instead of prescribing prefabricated models.

All in all, we know best how our products should be modelled!

4.1.1. E-commerce solutions, claiming to be plug-and-play, usually use one of these (anti-)patterns

Either, they offer a field for every possible variation, or they use the Entity Attribute Value [https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model]
(EAV) pattern to add meta-data for each of our models. This at a first glance seems to be easy.
But both approaches are unwieldy and have serious drawbacks. They both apply a different “physical
schema” – the way data is stored, rather than a “logical schema” – the way users and applications
require that data. As soon as we have to combine our e-commerce solution with some
Enterprise Resource Planning (ERP) software, additional back-and-forward conversion routines have
to be added.

4.1.2. In djangoSHOP, the physical representation of a product always maps to its logical

djangoSHOP‘s approach to this problem is to have a minimal set of models. These abstract models
are stubs providing to subclass the physical models. Hence the logical representation of the
product conforms to their physical one. Moreover, it is even possible to represent various types of
products by subclassing polymorphically from an abstract base model. Thanks to Django’s Object
Relational Mapper, modeling the logical representation for a set of products, together with an
administration backend, becomes almost effortless.

Therefore the base class to model a product is a stub which contains only these three fields:

The timestamps for created_at and updated_at; these are self-explanatory.

A boolean field active, used to signalize the products availability.

The attentive reader may wonder, why there not even fields for the most basic requirements of each
sellable article, there is no product name, no price field and no product code.

The reason for this is, that djangoSHOP does not impose any fields, which might require
a different implementation for the merchants use case. However, for a sellable commodity some
information is fundamental and required. But its up to him how to implement these fields:

The product’s name must be implemented as a model field or as a property method, but both must be
declared as product_name. Use a method implementation for composed and translatable names,
otherwise use a database model field with that name.

The product’s price must be implemented as a method declared as get_price(request) which accepts
the request object. This gives the merchant the ability to vary the price and/or its currency
depending on the geographic location, the customers login status, the browsers user-agent, or
whatever else.

An optional, but highly recommended field is the products item number, declared as
product_code. It shall return a unique and language independent identifier for each product,
to be identifiable. In most cases the product code is implemented by the product model itself, but
in some circumstances it may be implemented by the product’s variant. The
SmartPhone from the demo code is one such example.

The example section of djangoSHOP contains a few models which can be copied and adopted to the
specific needs of the merchants products. Let’s have a look at a few use-cases:

4.2. Case study: Smart-Phones

There are many smart-phone models with different equipment. All the features are the same, except
for the built-in storage. How shall we describe such a model?

In that model, the product’s name shall not be translatable, not even on a multi-lingual site, since
smart-phones have international names used everywhere. Smart-phones models have dimensions, an
operating system, a display type and other features.

But smart-phone have different equipment, namely the built-in storage, and depending on that, they
have different prices and a unique product code. Therefore our product models consists of two
classes, the generic smart phone model and the concrete flavor of that model.

Therefore we would model our smart-phones using a database model similar to the following one:

from shop.models.product import BaseProductManager, BaseProduct
from shop.money import Money

class SmartPhoneModel(BaseProduct):
 product_name = models.CharField(max_length=255,
 verbose_name=_("Product Name"))
 slug = models.SlugField(verbose_name=_("Slug"))
 description = HTMLField(help_text=_("Detailed description."))
 manufacturer = models.ForeignKey(Manufacturer,
 verbose_name=_("Manufacturer"))
 screen_size = models.DecimalField(_("Screen size"),
 max_digits=4, decimal_places=2)
 # other fields to map the specification sheet

 objects = BaseProductManager()
 lookup_fields = ('product_name__icontains',)

 def get_price(request):
 aggregate = self.smartphone_set.aggregate(models.Min('unit_price'))
 return Money(aggregate['unit_price__min'])

class SmartPhone(models.Model):
 product_model = models.ForeignKey(SmartPhoneModel)
 product_code = models.CharField(_("Product code"),
 max_length=255, unique=True)
 unit_price = MoneyField(_("Unit price"))
 storage = models.PositiveIntegerField(_("Internal Storage"))

Lets go into the details of these classes. The model fields are self-explanatory. Something to note
here is, that each product requires a field product_name. This alternatively can also be
implemented as property.

Another mandatory attribute for each product is the ProductManager class. It must inheriting
from BaseProductManager, and adds some methods to generate some special querysets.

Finally, the attribute lookup_fields contains a list or tuple of lookup fields [https://docs.djangoproject.com/en/stable/topics/db/queries/#complex-lookups-with-q-objects]. These are
required by the administration backend, and used when the site editor has to search for certain
products. Since the framework does not impose which fields are used to distinguish between products,
we must give some hints.

Each product also requires a method implemented as get_price(request). This must return the
unit price using one of the available Money Types.

4.2.1. Add multilingual support

Adding multilingual support to an existing product is quite easy and straight forward. To achieve
this djangoSHOP uses the app django-parler [http://django-parler.readthedocs.org/] which provides Django model translations without
nasty hacks. All we have to do, is to replace the ProductManager with one capable of handling
translations:

class ProductQuerySet(TranslatableQuerySet, PolymorphicQuerySet):
 pass

class ProductManager(BaseProductManager, TranslatableManager):
 queryset_class = ProductQuerySet

The next step is to locate the model fields, which shall be available in different languages. In
our use-case thats only the product’s description:

class SmartPhoneModel(BaseProduct, TranslatableModel):
 # other field remain unchanged
 description = TranslatedField()

class ProductTranslation(TranslatedFieldsModel):
 master = models.ForeignKey(SmartPhoneModel, related_name='translations', null=True)
 description = HTMLField(help_text=_("Some more detailed description."))

 class Meta:
 unique_together = [('language_code', 'master')]

This simple change now allows us to offer the shop’s assortment in different natural languages.

4.2.2. Add Polymorphic Support

If besides smart phones we also want to sell cables, pipes or smart cards, we must split our product
models into a common- and a specialized part. That said, we must separate the information every
product requires from the information specific to a certain product type. Say, in addition to smart
phones, we also want to sell smart cards. First we declare a generic Product model, which is a
common base class of both, SmartPhone and SmartCard:

class Product(BaseProduct, TranslatableModel):
 product_name = models.CharField(max_length=255, verbose_name=_("Product Name"))
 slug = models.SlugField(verbose_name=_("Slug"), unique=True)
 description = TranslatedField()

 objects = ProductManager()
 lookup_fields = ('product_name__icontains',)

Next we only add the product specific attributes to the class models derived from Product:

class SmartPhoneModel(Product):
 manufacturer = models.ForeignKey(Manufacturer, verbose_name=_("Manufacturer"))
 screen_size = models.DecimalField(_("Screen size"), max_digits=4, decimal_places=2)
 battery_type = models.PositiveSmallIntegerField(_("Battery type"), choices=BATTERY_TYPES)
 battery_capacity = models.PositiveIntegerField(help_text=_("Battery capacity in mAh"))
 ram_storage = models.PositiveIntegerField(help_text=_("RAM storage in MB"))
 # and many more attributes as found on the data sheet

class SmartPhone(models.Model):
 product_model = models.ForeignKey(SmartPhoneModel)
 product_code = models.CharField(_("Product code"), max_length=255, unique=True)
 unit_price = MoneyField(_("Unit price"))
 storage = models.PositiveIntegerField(_("Internal Storage"))

class SmartCard(Product):
 product_code = models.CharField(_("Product code"), max_length=255, unique=True)
 storage = models.PositiveIntegerField(help_text=_("Storage capacity in GB"))
 unit_price = MoneyField(_("Unit price"))
 CARD_TYPE = (2 * ('{}{}'.format(s, t),) for t in ('SD', 'SDXC', 'SDHC', 'SDHC II') for s in ('', 'micro '))
 card_type = models.CharField(_("Card Type"), choices=CARD_TYPE, max_length=15)
 SPEED = ((str(s), "{} MB/s".format(s)) for s in (4, 20, 30, 40, 48, 80, 95, 280))
 speed = models.CharField(_("Transfer Speed"), choices=SPEED, max_length=8)

If MyShop would sell the iPhone5 with 16GB and 32GB storage as independent products, then we could
unify the classes SmartPhoneModel and SmartPhone and move the attributes product_code
and unit_price into the class Product. This would simplify some programming aspects, but
would require the merchant to add a lot of information twice. Therefore we remain with the
model layout presented here.

4.3. Caveat using a ManyToManyField with existing models

Sometimes we may need to use a ManyToManyField for models which are handled by other apps in
our project. This for example could be an attribute files referring the model
filer.FilerFileField from the library django-filer [https://github.com/divio/django-filer]. Here Django would try to create a mapping
table, where the foreign key to our product model can not be resolved properly, because while
bootstrapping the application, our Product model is still considered to be deferred.

Therefore, we have to create our own mapping model and refer to it using the through
parameter, as shown in this example:

from six import with_metaclass
from django.db import models
from filer.fields.file import FilerFileField
from shop.models import deferred
from shop.models.product import BaseProductManager, BaseProduct

class ProductFile(with_metaclass(deferred.ForeignKeyBuilder, models.Model)):
 file = FilerFileField()
 product = deferred.ForeignKey(BaseProduct)

class Product(BaseProduct):
 # other fields
 files = models.ManyToManyField('filer.File', through=ProductFile)

 objects = ProductManager()

Note

Do not use this example for creating a many-to-many field to FilerImageField.
Instead use shop.models.related.BaseProductImage which is a base class for this kind
of mapping. Just import and materialize it, in your own project.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

5. Catalog

The catalog probably is that part, where customers of our e-commerce site spend the most time.
Often it even makes sense, to start the Catalog List View on the main landing page.

In this documentation we presume that categories of products are built up using specially tagged
CMS pages in combination with a djangoCMS apphook [http://docs.django-cms.org/en/stable/how_to/apphooks.html]. This works perfectly well for most
implementation, but some sites may require categories implemented independently of the CMS.

Using an external djangoSHOP plugin for managing categories is a very conceivable solution,
and we will see separate implementations for this feature request. Using such an external category
plugin can make sense, if this e-commerce site requires hundreds of hierarchical levels and/or
these categories require a set of attributes which are not available in CMS pages. If you are
going to use externally implemented categories, please refer to their documentation, since here we
proceed using CMS pages as categories.

A nice aspect of djangoSHOP is, that it doesn’t require the programmer to write any special
Django Views in order to render the catalog. Instead all merchant dependent business logic goes
into a serializer, which in this documentation is referred as ProductSummarySerializer.

5.1. Catalog List View

In this documentation, the catalog list view is implemented as a djangoCMS page. Depending on
whether the e-commerce aspect of that site is the most prominent part, or just a niche of the CMS
select an appropriate location in the page tree and create a new page. This will become the root
of our catalog list.

But first we must Create the ProductsListApp.

5.1.1. Create the ProductsListApp

To retrieve a list of product models, the Catalog List View requires a djangoCMS apphook [http://docs.django-cms.org/en/stable/how_to/apphooks.html]. This
ProductsListApp must be added into a file named cms_app.py and located in the root folder
of the merchant’s project:

myshop/cms_app.py

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

class ProductsListApp(CMSApp):
 name = _("Catalog List")
 urls = ['myshop.urls.products']

apphook_pool.register(ProductsListApp)

as all apphooks, it requires a file defining its urlpatterns:

myshop/urls/products.py

from django.conf.urls import patterns, url
from rest_framework.settings import api_settings
from shop.views.catalog import CMSPageProductListView
from myshop.serializers import ProductSummarySerializer

urlpatterns = patterns('',
 url(r'^$', CMSPageProductListView.as_view(
 serializer_class=ProductSummarySerializer,
)),
 # other patterns
)

Here the ProductSummarySerializer serializes the product models into a representation suitable
for being rendered inside a CMS page, as well as being converted to JSON. This allows us to reuse
the same Django View (CMSPageProductListView) whenever the catalog list switches into infinite
scroll mode, where it only requires the product’s summary digested as JavaScript objects.

In case we need Additional Product Serializer Fields, lets add them to this class using the
serializer fields [http://www.django-rest-framework.org/api-guide/fields/] from the Django RESTFramework library.

5.1.2. Add the Catalog to the CMS

In the page list editor of djangoCMS, create a new page at an appropriate location of the
page tree. As the page title and slug we should use something describing our product catalog in a
way, both meaningful to the customers as well as to search engines.

Next, we change into advanced setting.

As a template we use one with a big placeholder, since it must display our list of products.

As Application, select “Catalog List” or whatever we named our ProductsListApp. This
selects the apphook we created in the previous section.

Then we save the page, change into Structure mode and locate the Main Content Container. Here
we add a container with a Row and Column. As the child of this column we chose a
Catalog List View plugin from section Shop.

Finally we publish the page and enter some text into the search field. Since we haven’t assigned
any products to the CMS page, we won’t see anything yet.

5.2. Catalog Detail View

The product’s detail pages are the only ones not being managed by the CMS. This is because we often
have thousands of products and creating a CMS page for each of them, would be kind of overkill.

Therefore the template used to render the products’s detail view is selected automatically by the
ProductRetrieveView [1] following these rules:

	look for a template named <myshop>/catalog/<product-model-name>-detail.html [2] [3],
otherwise

	look for a template named <myshop>/catalog/product-detail.html [2], otherwise

	use the template shop/catalog/product-detail.html.

	[1]	This is the View class responsible for rendering the product’s detail view.

	[2]	(1, 2) <myshop> is the app label of the project in lowercase.

	[3]	<product-model-name> is the class name of the product model in lowercase.

5.2.1. Use CMS Placeholders on Detail View

If we require CMS functionality for each product’s detail page, its quite simple to achieve. To the
model class implementing our Product, add djangoCMS Placeholder field [http://django-cms.readthedocs.org/en/stable/how_to/placeholders.html] named placeholder.Then
add the templatetag {% render_placeholder product.placeholder %} the the template implementing
the detail view of our product.

5.2.2. Route requests on Detail View

The ProductsListApp, which we previously have registered into djangoCMS, is able to route
requests on all of its sub-URLs. This is done by expanding the current list of urlpatterns:

myshop/urls/products.py

from django.conf.urls import patterns, url
from shop.views.catalog import ProductRetrieveView
from myshop.serializers import ProductDetailSerializer

urlpatterns = patterns('',
 # previous patterns
 url(r'^(?P<slug>[\w-]+)$', ProductRetrieveView.as_view(
 serializer_class=ProductDetailSerializer,
)),
 # other patterns
)

All business logic regarding our product now goes into our customized serializer class named
ProductDetailSerializer. This class then may access the various attributes of our product model
and merge them into a serializable representation.

This serialized representation normally requires all attributes from our model, therefore we can
write it as simple as:

from shop.rest.serializers import ProductDetailSerializerBase

class ProductDetailSerializer(ProductDetailSerializerBase):
 class Meta:
 model = Product
 exclude = ('active',)

In case we need Additional Product Serializer Fields, lets add them to this class using the
serializer fields [http://www.django-rest-framework.org/api-guide/fields/] from the Django RESTFramework library.

5.2.2.1. Additional Product Serializer Fields

Sometimes such a serializer field shall return a HTML snippet; this for instance is required for
image source () tags, which must thumbnailed by the server when rendered using
the appropriate templatetags from the easythumbnail [https://easy-thumbnails.readthedocs.org/en/stable/usage/#templates] library. For these use cases add a field
of type foo = SerializerMethodField() with an appropriate method get_foo() to our serializer
class. This method then may forward the given product to a the built-in renderer:

class ProductDetailSerializer(ProductDetailSerializerBase):
 # other attributes

 def get_foo(self, product):
 return self.render_html(product, 'foo')

This HTML renderer method looks up for a template following these rules:

	look for a template named <myshop>/product/catalog-<product-model-name>-<second-argument>.html
[4] [5] [6], otherwise

	look for a template named <myshop>/product/catalog-product-<second-argument>.html [4] [6],
otherwise

	use the template shop/product/catalog-product-<second-argument>.html [6].

	[4]	(1, 2) <myshop> is the app label of the project in lowercase.

	[5]	<product-model-name> is the class name of the product model in lowercase.

	[6]	(1, 2, 3) <field-name> is the attribute name of the just declared field in lowercase.

5.2.3. Emulate Categories

Since we want to use CMS pages to emulate categories, the product model must declare a relationship
between the CMS pages and itself. This usually is done by adding a Many-to-Many field named
cms_pages to our Product model.

Since we work with deferred models, we can not use the mapping table, which normally is generated
automatically for Many-to-Many fields by the Django framework. Instead, this mapping table must
be created manually and referenced using the though parameter, when declaring the field:

from shop.models.product import BaseProductManager, BaseProduct
from shop.models.related import BaseProductPage

class ProductPage(BaseProductPage):
 """Materialize many-to-many relation with CMS pages"""

class Product(BaseProduct):
 # other model fields
 cms_pages = models.ManyToManyField('cms.Page',
 through=ProductPage)

 objects = ProductManager()

In this example the class ProductPage is responsible for storing the mapping information
between our Product objects and the CMS pages.

5.2.3.1. Admin Integration

To simplify the declaration of the admin backend used to manage our Product model, djangoSHOP
is shipped with a special mixin class, which shall be added to the product’s admin class:

from django.contrib import admin
from shop.admin.product import CMSPageAsCategoryMixin
from myshop.models import Product

@admin.register(Product)
class ProductAdmin(CMSPageAsCategoryMixin, admin.ModelAdmin):
 fields = ('product_name', 'slug', 'product_code',
 'unit_price', 'active', 'description',)
 # other admin declarations

This then adds a horizontal filter widget to the product models. Here the merchant must select
each CMS page, where the currently edited product shall appear on.

If we are using the method render_html() to render HTML snippets, these are cached by
djangoSHOP, if caching is configured and enabled for that project. Caching these snippets is
highly recommended and gives a noticeable performance boost, specially while rendering catalog list
views.

Since we would have to wait until they expire naturally by reaching their expire time,
djangoSHOP offers a mixin class to be added to the Product admin class, to expire all HTML
snippets of a product altogether, whenever a product in saved in the backend. Simply add
shop.admin.product.InvalidateProductCacheMixin to the ProductAdmin class described
above.

Note

Due to the way keys are handled in many caching systems, the InvalidateProductCacheMixin
only makes sense if used in combination with the redis_cache [http://django-redis-cache.readthedocs.org/en/stable/] backend.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

6. Filter Products by its Attributes

Besides Full Text Search, adding some filter functionality to an e-commerce site is another
very important feature. Customers must be able to narrow down the list of available products to
a set of desired products using a combination of prepared filter attributes.

Since in djangoSHOP each product class declares its own database model with its own attributes,
often related with foreign data models, filtering must be implemented by the merchant on top of the
existing product models. Fortunately the REST framework in combination with `Django Filter`_ makes
this a rather simple task.

6.1. Adding a filter to the List View

In djangoSHOP listing the products normally is controlled by
shop.views.catalog.ProductListView or shop.views.catalog.CMSPageProductListView.
By default these View classes are configured to use the default filter backends as provided by the
REST framework. These filter backends can be configured globally through the settings variable
DEFAULT_FILTER_BACKENDS.

Additionally we can subclass the filter backends for each View class in our urls.py. Say, we
need a special catalog filter, which groups our products by a certain product attribute. Then we
can create customized filter backend

filters.py

from rest_framework.filters import BaseFilterBackend

class CatalogFilterBackend(BaseFilterBackend):
 def filter_queryset(self, request, queryset, view):
 queryset = queryset.order_by('attribute__sortmetric')
 return queryset

In urls.py, where we route requests to the class shop.views.catalog.ProductListView,
we then replace the default filter backends by our own implementation:

myshop/urls/catalog.py

from django.conf.urls import patterns, url
from rest_framework.settings import api_settings
from shop.views.catalog import ProductListView
from myshop.serializers import ProductSummarySerializer

urlpatterns = patterns('',
 url(r'^$', ProductListView.as_view(
 serializer_class=ProductSummarySerializer,
 filter_backends=[CatalogFilterBackend],
),
)

The above example is very simple but gives a rough impression on its possibilities.

6.1.1. Working with Django-Filter

django-filter [http://django-filter.readthedocs.org/en/latest/usage.html] is a generic, reusable application to alleviate writing some of the more mundane
bits of view code. Specifically, it allows users to filter down a queryset based on a model’s
fields, displaying the form to let them do this.

REST framework also includes support for generic filtering backends [http://www.django-rest-framework.org/api-guide/filtering/#generic-filtering] that allow you to easily
construct complex searches and filters.

By creating a class which inherit from django_filters.FilterSet, we can build filters
against each attribute of our product. This filter then uses the passed in query parameters to
restrict the set of products available from our catalog:

myshop/filters.py

import django_filters

class ProductFilter(django_filters.FilterSet):
 width = django_filters.RangeFilter(name='width')
 props = django_filters.MethodFilter(action='filter_properties', widget=SelectMultiple)

 class Meta:
 model = OurProduct
 fields = ['width', 'props']

 def filter_properties(self, queryset, values):
 for value in values:
 queryset = queryset.filter(properties=value)
 return queryset

This example assumes that OurProduct has a numeric attribute named width and a many-to-many
field named properties.

We then can add this filter to the list view for our products. In djangoSHOP we normally do
this through the url patterns:

myshop/urls.py

urlpatterns = patterns('',
 url(r'^$', ProductListView.as_view(
 serializer_class=ProductSummarySerializer,
 filter_class=ProductFilter,
)),
 # other patterns
)

By appending ?props=17 to the URL, the above filter class will restrict the products in our list
view to those with a property of 17.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

7. Cascade Plugins

DjangoSHOP extends the eco-system of djangoCMS plugins, djangocms-cascade [http://djangocms-cascade.readthedocs.org/en/latest/], by additional
shop-specific plugins. This allows us to create a whole shopping site, which consists of many
different elements, without having to craft templates by hand – with one exception: The product
detail views.

Therefore all we have to focus on, is a default page template with one big placeholder. This
placeholder then is subdivided into containers, rows, columns and other elements of the Cascade
plugin collection.

This however requires a completely different approach, from the designer point of view. The way web
design was done a few years ago, starting with the screenshot of a finished page, must be rethought.
This has been discussed in length by many web-designers, especially by Brad Frost in his excellent
book on Atomic Web Design [http://atomicdesign.bradfrost.com/table-of-contents/]. He propagates to reverse the design process and start with the
smallest entity, which he calls Atoms. They form to bigger components, named Molecules, which
themselves aggregate to Organisms.

Some designers nowadays build those components directly in HTML and CSS or SASS, instead of drawing
their screens using programs such as InDesign or PhotoShop (which by the way never was intended for
this kind of work). It also exempts having the programmer to convert those screens into HTML and CSS
– a time consuming and never satisfying job.

According to Frost, the next bigger component after the Organism is the template. This is where
djangocms-cascade jumps in. Each of the Cascade plugins is shipped with its own default
template, which can easily be overwritten by the designers own implementation.

7.1. Overriding Templates

For all plugins described here, we can override the provided templates with our own implementation.
If the shop framework provides a template, named /shop/folder/my-organism.html, then we may
override it using /merchantimplementaion/folder/my-organism.html.

This template then usually extends the existing framework template with

{% extends "/shop/folder/my-organism.html" %}

{% block shop-some-identifier %}
 <div>...</div>
{% endblock %}

This is in contrast to Django’s own implementation for searching the template, but allows to extend
exiting templates more easily.

7.2. Breadcrumb

The BreadcrumbPlugin has four different rendering options: Default, Soft-Root,
With Catalog Count and Empty. It can be added exclusively to the placeholder named
Breadcrumb, unless otherwise configured.

The Default breadcrumb behaves as expected. Soft-Root appends the page title to the existing
breadcrumb, it shall be used for pages marked as soft root. A breadcrumb of type
With Catalog Count adds a badge containing the number of items. Use an Empty to hide the
breadcrumb otherwise displayed by the placeholder as default.

7.3. Cart

The CartPlugin has four different rendering options: Editable, Static, Summary and Watch-List.
Refer to the Cart using a Cascade Plugin for details.

7.4. Checkout Forms

All Forms added to the checkout page are managed by members of the Cascade plugin system. All these
plugin inherit from a common base class, shop.cascade.plugin_base.DialogFormPluginBase.
They all have in common to render and validate one specific Form, which itself inherits from
shop.forms.DialogForm or shop.forms.DialogModelForm.

A nice aspect of this approach is, that ...

	if we add, change or delete attributes in a form, fields are added, changed or deleted from the
rendered HTML as well.

	we get client side form validation for free, without having to write any Javascript nor HTML.

	if we add, change or delete attributes in a form, this modification propagates down to both
form validation controllers: That one in Javascript used on the client as well as the final one,
validating the form on the server.

	if our forms are made out of models, all of the above works as well.

	we can arrange each of those form components using the Structure editor from djangoCMS
toolbar. This is much faster, than by crafting templates manually.

As we can see from this approach, djangoSHOP places great value on the principles of a
Single Source of Truth [https://en.wikipedia.org/wiki/Single_Source_of_Truth], when working with customized database models and forms.

Many of these Forms can be rendered using two different approaches:

7.4.1. Form dialog

Here we render all model fields as input fields and group them into an editable form. This is the
normal use case.

7.4.2. Static summary

Here we render all model fields as static strings without wrapping it into a form. This shall be
used to summarize all inputs, preferably on the last process step.

These are the currently available plugins provided by djangoSHOP to build the checkout page:

7.4.2.1. Customer Form Plugin

The Customer Form is used to query information about some personal information, such as
the salutation, the first- and last names, its email address etc. In simple terms, this form
combines the fields from the model classes shop.models.customer.Customer and
email_auth.models.User or auth.models.User respectively. This means that fields,
we add to our Customer model, are reflected automatically into this form.

7.4.2.2. Guest Form Plugin

The Guest Form is a reduced version of the Customer Form. It only asks for the email
address, but nothing else. We use it for customers which do not want to create an account.

7.4.2.3. Shipping- and Billing Address Forms

There are two form plugins, where customers can add their shipping and/or billing address. The
billing address offers a checkbox allowing to reuse the shipping address. By overriding the form
templates, this behavior can be switched.
Both plugins provide a form made up from the model class implementing
shop.models.address.AddressModel.

7.4.2.4. Select the Payment Provider

For each payment provider registered within djangoSHOP, this plugin creates a list
of radio buttons, where customers can chose their desired payment provider. By overriding the
rendering templates, additional forms, for instance to add credit card data, can be added.

7.4.2.5. Select a Shipping Method

For each shipping provider registered within djangoSHOP, this plugin creates a list
of radio buttons, where customers can chose their desired shipping method.

7.4.2.6. Extra Annotations Plugin

This plugin provides a form, where customers can enter an extra annotation, while they proceed
through the checkout process.

7.4.2.7. Accept Condition Plugin

Normally customers must click onto a checkbox to accept various legal requirements, such as the
terms and conditions of this site. This plugin offers a text editor, where the merchant can enter
a paragraph, possibly with a link onto another CMS page explaining them in more details.

7.4.2.8. Required Form Fields Plugin

Most checkout forms have one or more required fields. To labels of required input fields, an
asterisk is appended. This plugin can be used to add a short text message stating “* These fields
are required”. It normally should be placed between the last checkout form and the proceed button.

7.4.2.9. Proceed Button

This plugin adds a styleable proceed button to any placeholder. This kind of button differs from a
clickable link button in that sense, that it first sends all gathered form data to the server and
awaits a response. Only if all forms are successfully validated, this button proceeds to the given
link.

This proceed button can also handle two non-link targets: “Reload Page” and “Purchase Now”.

The first target is useful to reload the page in a changed context, for instance if a site visitor
logged in and now shall get a personalized page.

The second target is special to djangoSHOP and exclusively used, when the customer performs
The Purchasing Operation.

7.5. Authentication

Before proceeding with various input forms, we must know the authentication status of our site
visitors. These different states are explained here in detail:
Anonymous Users and Visiting Customers.

Therefore we need pluggable forms, where visitors can sign in and out, change and rest passwords and
so on. All this authentication forms are handled by one single plugin

This plugin handles a bunch of authentication related forms. Lets list them:

7.5.1. Login Form

This is a simple login form accepting a username and password.

[image: login]

This form normally is used in combination with Link type: CMS Page.

7.5.2. Logout Form

This logout form just adds a button to sign out from the site.

[image: logout]

This form normally is used in combination with Link type: CMS Page.

7.5.3. Shared Login/Logout Form

This combines the Login Form with the Logout Form so, that
anonymous visitors see the login form, while logged in users see the logout form. This form
normally is used in combination with Link type: Reload Page.

7.5.4. Password Reset Form

This form offers a field, so that registered users, which forgot their password, can enter their
email address to start a password reset procedure.

[image: reset-password]

7.5.5. Login & Reset Form

This extends the Shared Login/Logout Form by combining it with the
Password Reset Form form.

[image: login-reset]

If someone clicks on the link Password Forgotten? the form extends to

[image: login-reset-open]

This form normally is used in combination with Link type: Reload Page.

7.5.6. Change Password Form

This form offers two field to change the password. It only appears for logged in users.

[image: change-password]

7.5.7. Register User Form

Using this form, anonymous visitors can register themselves. After having entered their email
address and their desired passwords, they become registered users.

[image: register-user]

This form normally is used in combination with Link type: Reload Page.

7.5.8. Continue as Guest Form

This form just adds a button, so that visitors can declare themselves as guest users who do not want
to register an account, nor expose their identity.

[image: continue-as-guest]

This form normally is used in combination with Link type: Reload Page.

7.6. Process Bar

The ProcessBarPlugin can be used to group many forms plugins onto the same page, by dividing
them up into different block. Only one block is visible at a time. At to top of that page, a
progress bar appears which shows the active step.

This plugin checks the validity of all of its forms and allows to proceed to the next step only,
if all of them are valid.

[image: processbar-step3]

Each step in that process bar must contain a Next Step Button, so that the customer can move
to the next step, provided all forms are valid.

The last step shall contain a Proceed Button which shall be configured to take
appropriate action, for instance to start the purchasing operation using the Link type
“Purchase Now”.

Note

This plugin requires the AngularJS directive <bsp-process-bar> as found in the
bower package angular-bootstrap-plus [https://github.com/jrief/angular-bootstrap-plus].

7.7. Catalog

The catalog list view is handled by the ShopCatalogPlugin.

This plugin requires a CMS page, which uses the apphook [http://docs.django-cms.org/en/latest/how_to/apphooks.html] ProductsListApp. First assure that we
Create the ProductsListApp. This CMSapp must be implemented by the merchant; it thus
is part of the project, rather than the djangoSHOP framework.

7.8. Viewing Orders

The Order Views plugin is used to render the list- and detail views of orders, specific to the
currently logged in customer. Without a number in the URL, a list of all orders belonging to the
current customer is shown. By adding the primary key of a specific order to the URL, all ordered
items from that specific order are shown. We name this the order detail view, although it is a list
of items.

This plugin requires a CMS page, which as uses the CMSApp OrderApp. This CMS application is part
of the shop framework and always available in the Advanced Settings of each CMS page.

The Order List- and Detail Pages share one common entity in our CMS page tree. The Order Detail
view just rendered in a different way. Editing this pseudo page therefore is not possible because
it is not part of the CMS.

7.9. Search Results

Rendering search results is handled by the Search Results plugin.

On a site offering full-text search, add a page to display search results. First assure that we
have a Search View assigned to that page as apphook [http://docs.django-cms.org/en/latest/how_to/apphooks.html]. This CMSapp must be
implemented by the merchant; it thus is part of the project, rather than the djangoSHOP
framework.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

8. Cart and Checkout

In djangoSHOP the cart’s content is always stored inside the database. In previous versions of
the software, the cart’s content was kept inside the session for anonymous users and stored in the
database for logged in users. Now the cart is always stored in the database. This approach
simplifies the code and saves some random access memory, but adds another minor problem:

From a technical point of view, the checkout page is the same as the cart. They can both be on
separate pages, or be merged on the same page. Since what we would normally name the
“Checkout Page”, is only a collection of Cascade Plugins, we won’t go into
further detail here.

8.1. Expired Carts

Sessions expire, but then the cart’s content of anonymous customers still remains in the database.
We therefore must assure that these carts will expire too, since they are of no use for anybody,
except maybe for some data-mining.

By invoking

./manage.py shopcustomers
Customers in this shop: total=3408, anonymous=140, expired=88,
 active=1108, guests=2159, registered=1109, staff=5.

we gather some statistics about former visiting customers of our djangoSHOP. Here we see that
1109 customers bought as registered users, while 2159 bought as guests. There are 88 customers in
the database, but they don’t have any associated session anymore, hence they can be considered as
expired. Invoking

./manage.py shopcustomers --delete-expired

deletes those expired customers, and with them their expired carts. This task shall be performed
by a cronjob on a daily basis.

8.2. Cart Models

The cart consists of two models classes Cart and CartItem, both inheriting from BaseCart
and BaseCartItem respectively. As with most models in djangoSHOP, these are using the
Deferred Model Pattern, so that inheriting from a base class automatically sets the
foreign keys to the appropriate model. This gives the programmer the flexibility to add as many
fields to the cart, as the merchant requires for his special implementation.

In most use-cases, the default cart implementation will do the job. These default classes can be
found at shop.models.defaults.cart.Cart and shop.models.defaults.cart_item.CartItem.
To materialize the default implementation, it is enough to import these two files into the
merchants shop project. Otherwise we create our own cart implementation inheriting from BaseCart
and BaseCartItem. Since the item quantity can not always be represented by natural numbers, this
field must be added to the CartItem implementation rather than its base class. Its field type
must be countable, so only IntegerField, FloatField or DecimalField are allowed as
quantity.

Note

Assure that the model CartItem is imported (and materialized) before model
Product and classes derived from it.

The Cart model uses its own manager. Since there is only one cart per customer, accessing the
cart must be performed using the request object. We can always access the cart for the current
customer by invoking:

from shop.models.cart import CartManager

cart = CartManager.get_or_create_from_request(request)

Adding a product to the cart, must be performed by invoking:

from shop.models.cart import CartItemManager

cart_item = CartItemManager.get_or_create(cart=cart,
 product=product, quantity=quantity, **extras)

This returns a new cart item object, if the given product could not be found in the current cart.
Otherwise it returns the existing cart item, increasing the quantity by the given value. For
products with variations it’s not always trivial to determine if they shall be considered as
existing cart items, or as new ones. Since djangoSHOP can’t tell that difference for any kind
of product, it delegates this question. Therefore the class implementing the shop’s products shall
override their method is_in_cart. This method is used to tell the CartItemManager whether a
product has already been added to the cart or is new.

Whenever the method cart.update(request) is invoked, the cart modifiers run against all items
in the cart. This updates the line totals, the subtotal, extra costs and the final sum.

8.2.1. Watch List

Instead of implementing a separate watch-list (some would say wish-list), djangoSHOP uses a
simple trick. Whenever the quantity of a cart item is zero, this item is considered to be in the
watch list. Otherwise it is considered to be in the cart. The train of though is as follows:
A quantity of zero, never makes sense for items in the cart. On the other side, any quantity
makes sense for items in the watch-list. Therefore reducing the quantity of a cart item to zero is
the same as keeping an eye on it, without actually wanting it to purchase.

8.3. Cart Views

Displaying the cart in djangoSHOP is as simple, as adding any other page to the CMS. Change into
the Django admin backend and enter into the CMS page tree. At an appropriate location in that tree
add a new page. As page title use “Cart”, “Basket”, “Warenkorb”, “Cesta”, or whatever is appropriate
in the natural language used for that site. Multilingual CMS installations offer a page title for
each language.

In the CMS page editor click onto the link named Advanced Settings at the bottom of the popup
window. As template, chose the default one, provided it contains at least one big placeholder [http://django-cms.readthedocs.org/en/latest/introduction/templates_placeholders.html#placeholders].

Enter “shop-cart” into the Id-field just below. This identifier is required by some templates
which link directly onto the cart view page. If this field is not set, some links onto the cart page
might not work properly.

It is suggested to check the checkbox named Soft root. This prevents that a menu item named
“Cart” will appear side by side with other pages from the CMS. Instead, we prefer to render a
special cart symbol located on the right of the navigation bar.

8.3.1. Cart using a Cascade Plugin

Click onto View on site and change into front-end editing mode to use the grid-system of
djangocms-cascade [http://djangocms-cascade.readthedocs.org/en/latest/]. Locate the main placeholder and add a Row followed by at least one
Column plugin; both can be found in section Bootstrap. Below that column plugin, add a
child named Cart from section Shop. This Cart Plugin can be rendered in four different
ways:

[image: cart-structure]

8.3.1.1. Editable Cart

An “Editable Cart” is rendered using the Angular JS template engine. This means that a customer may
change the number of items, delete them or move them the the watch-list. Each update is reflected
immediately into the cart’s subtotal, extra fields and final totals.

Using the above structure, the rendered cart will look similar to this.

[image: cart-display]

Depending on the chosen template, this layout may vary.

8.3.1.2. Static Cart

An alternative to the editable cart is the ‘static cart’. Here the cart items are rendered by
the Django template engine. Since here everything is static, the quantity can’t be changed anymore
and the customer would have to proceed to the checkout without being able to change his mind. This
probably only makes sense when purchasing a single product.

8.3.1.3. Cart Summary

This only displays the cart’s subtotal, the extra cart fields, such as V.A.T., shipping costs and
the final total.

8.3.1.4. Watch List

A special view of the cart is the watch list. It can be used by customers to remember items they
want to compare or buy sometimes later. The watch-list by default is editable, but does not
allow to change the quantity. This is because the watch-list shares the same object model as the
cart items. If the quantity of an item 0, then that cart item is considered to be watched. If
instead the quantity is 1 ore more, the item is considered to be in the cart. It therefore is
very easy to move items from the cart to the watch-list and vice versa. This concept also disallows
to have an item in both the cart and the watch-list. This during online shopping, often can be a
major point of confusion.

8.3.1.5. Render templates

The path of the templates used to render the cart views is constructed using the following rules:

	Look for a folder named according to the project’s name, ie. settings.SHOP_APP_LABEL in lower
case. If no such folder can be found, then use the folder named shop.

	Search for a subfolder named cart.

	Search for a template named editable.html, static.html, watch.html or summary.html.

These templates are written to be easily extensible by the customized templates. To override the
“editable cart” add a template with the path, say myshop/cart/editable.html to the projects
template folder. This template then shall begin with {% extend "shop/cart/editable.html" %}
and only override the {% block %}...{% endblock %} interested in.

Many of these template blocks are themselves embedded inside HTML elements such as
<script id="shop/....html" type="text/ng-template">. The reason for this is that the editable
cart is rendered in the browser by AngularJS using so called directives [https://docs.angularjs.org/guide/directive]. Hence it becomes very
straight-forward to override Angular’s script templates [https://docs.angularjs.org/api/ng/directive/script] using Django’s internal template engine.

8.3.1.5.1. Multiple templates

If for some special reasons we need different cart templates, then we must add this line to the
projects settings.py:

CMSPLUGIN_CASCADE_PLUGINS_WITH_EXTRA_RENDER_TEMPLATES = {
 'ShopCartPlugin': (
 (None, _("default")), # the default behavior
 ('myproject/cart/other-editable.html', _("extra editable")),
)
}

This will add an extra select button to the cart editor. The site administrator then can chose
between the default template and an extra editable cart template.

8.3.1.5.2. Proceed to Checkout

On the cart’s view, the merchant may decide whether to implement the checkout forms together with
the cart, or to create a special checkout page onto which the customer can proceed. From a technical
point of view, it doesn’t make any difference, if the cart and the checkout are combined on the same
CMS page, or if they are split across two or more pages. In the latter case simply add a button at
the end of each page, so that the customer can easily proceed to the next one.

On the checkout page, the customer has to fill out a few forms. These can be a contact form,
shipping and billing addresses, payment and shipping methods, and many more. Which ones depend on
the configuration, the legal regulations and the requirements of the shop’s implementation. In
Cascade Plugins all shop specific CMS plugins are listed. They can be combined
into whatever makes sense for a successful checkout.

8.3.2. Add a Cart via manually written Cart Template

Instead of using the CMS plugin system, the template for the cart can also be implemented manually.
Based on an existing page template, locate the element, where the cart shall be inserted. Then
use one of the existing templates in the folder django-shop/shop/templates/shop/cart/ as a
starting point, and insert it at an appropriate location in the page template. Next, in the
project’s settings.py, add this specialized template to the list CMS_TEMPLATES and select
it for that page.

From a technical point of view, it does not make any difference whether we use the cart plugin or a
handcrafted template. If the HTML code making up the cart has to be adopted to the merchants needs,
we normally are better off and much more flexible, if we override the template code as described
in section Render templates. Therefore, it is strongly discouraged to craft
cart and checkout templates by hand.

8.4. Cart Modifiers

Cart Modifiers are simple plugins that allow the merchant to define rules in a programmatic way,
how the totals of a cart are computed and how they are labeled. A typical job is to compute tax
rates, adding discounts, shipping and payment costs, etc.

Instead of implementing each possible combination for all of these use cases, the djangoSHOP
framework offers an API, where third party applications can hooks into every computational step.
One thing to note here is that Cart Modifiers are not only invoked, when the cart is complete and
the customer wants to proceed to the checkout, but also for each item before being added to the
cart.

This allows the programmer to vary the price of certain items, depending on the current state of
the cart. It can for instance be used, to set one price for the first item, and other prices for
every further items added to the cart.

Cart Modifiers are split up into three different categories: Generic, Payment and Shipping. In the
shops settings.py they must be configured as a list or tuple such as:

SHOP_CART_MODIFIERS = (
 'shop.modifiers.defaults.DefaultCartModifier',
 'shop.modifiers.taxes.CartExcludedTaxModifier',
 'myshop.modifiers.PostalShippingModifier',
 'shop.modifiers.defaults.PayInAdvanceModifier',
 'shop_stripe.modifiers.StripePaymentModifier',
)

When updating the cart, these modifiers are applied in the order of the above list. Therefore it
makes a difference, if taxes are applied before or after having applied the shipping costs.

Moreover, whenever in the detail view the quantity of a product is updated, then all configured
modifiers are ran for that item. This allows the ItemModelSerializer, to even change the unit
price of product depending on the total content of the cart.

Cart modifiers are easy to write and they normally consist only of a few lines of code. It is the
intention of djangoSHOP to seed an eco-system for these kinds of plugins.

Here is an incomplete list of some useful cart modifiers.

8.4.1. Generic Cart Modifiers

These kinds of cart modifiers are applied unconditionally onto the cart. A typical instance is the
DefaultCartModifier, the CartIncludeTaxModifier or the CartExcludeTaxModifier.

8.4.1.1. DefaultCartModifier

The shop.modifiers.default.DefaultCartModifier is required for almost every shopping cart.
It handles the most basic calculations, ie. multiplying the items unit prices with the chosen
quantity. Since this modifier sets the cart items line total, it must be listed as the first entry
in SHOP_CART_MODIFIERS.

8.4.1.2. Payment Cart Modifier

From these kinds of modifiers, only that for the chosen payment method is applied. Payment Modifiers
are used to add extra costs or discounts depending on the chosen payment method. By overriding the
method is_disabled a payment method can be disabled; useful to disable certain payments in case
the carts total is below a certain threshold.

8.4.1.3. Shipping Cart Modifier

From these kinds of modifiers, only that for the chosen shipping method is applied. Shipping
Modifiers are used to add extra costs or discounts depending on chosen shipping method, the number
of items in the cart and their weight. By overriding the method is_disabled a shipping method
can be disabled; useful to disable certain payments in case the carts total is below a certain
threshold.

8.4.1.4. How Modifiers work

Cart modifiers should extend the shop.modifiers.base.BaseCartModifier class and extend one
or more of the given methods:

Note

Until version 0.2 of djangoSHOP, the Cart Modifiers returned the amount and label
for the extra item rows, and djangoSHOP added them up. Since Version 0.3 cart modifiers
must change the line subtotals and cart total themselves.

	
class shop.modifiers.base.BaseCartModifier(identifier=None)

	Cart Modifiers are the cart’s counterpart to backends.

It allows to implement taxes and rebates / bulk prices in an elegant and reusable manner:
Every time the cart is refreshed (via it’s update() method), the cart will call all subclasses
of this modifier class registered with their full path in settings.SHOP_CART_MODIFIERS.

The methods defined here are called in the following sequence:
1. pre_process_cart: Totals are not computed, the cart is “rough”: only relations and
quantities are available
1a. pre_process_cart_item: Line totals are not computed, the cart and its items are “rough”:
only relations and quantities are available
2. process_cart_item: Called for each cart_item in the cart. The modifier may change the
amount in cart_item.line_total.
2a. add_extra_cart_item_row: It optionally adds an object of type ExtraCartRow to the
current cart item. This object adds additional information displayed on each cart items line.
3. process_cart: Called once for the whole cart. Here, all fields relative to cart items are
filled. Here the carts subtotal is used to computer the carts total.
3a. add_extra_cart_row: It optionally adds an object of type ExtraCartRow to the current
cart. This object adds additional information displayed in the carts footer section.
4. post_process_cart: all totals are up-to-date, the cart is ready to be displayed. Any
change you make here must be consistent!

Each method accepts the HTTP request object. It shall be used to let implementations
determine their prices according to the session, and other request information. The request
object also can be used to store arbitrary data to be passed between modifers using the
temporary dict request.cart_modifiers_state.

	
add_extra_cart_item_row(cart_item, request)

	Optionally add an ExtraCartRow object to the current cart item.

This allows to add an additional row description to a cart item line.
This method optionally utilizes or modifies the amount in cart_item.line_total.

	
add_extra_cart_row(cart, request)

	Optionally add an ExtraCartRow object to the current cart.

This allows to add an additional row description to the cart.
This method optionally utilizes cart.subtotal and modifies the amount in cart.total.

	
arrange_cart_items(cart_items, request)

	Arrange all items, which are intended for the shopping cart.
Override this method to resort and regroup the returned items.

	
arrange_watch_items(watch_items, request)

	Arrange all items, which are being watched.
Override this method to resort and regroup the returned items.

	
post_process_cart(cart, request)

	This method will be called after the cart was processed in reverse order of the
registered cart modifiers.
The Cart object is “final” and all the fields are computed. Remember that anything changed
at this point should be consistent: If updating the price you should also update all
relevant totals (for example).

	
pre_process_cart(cart, request)

	This method will be called before the Cart starts being processed.
It shall be used to populate the cart with initial values, but not to compute
the cart’s totals.

	
pre_process_cart_item(cart, item, request)

	This method will be called for each item before the Cart starts being processed.
It shall be used to populate the cart item with initial values, but not to compute
the item’s linetotal.

	
process_cart(cart, request)

	This will be called once per Cart, after every line item was treated by method
process_cart_item.

The subtotal for the cart is already known, but the total is still unknown.
Like for the line items, the total is expected to be calculated by the first cart modifier,
which typically is the DefaultCartModifier. Posterior modifiers can optionally change the
total and add additional information to the cart using an object of type ExtraCartRow.

	
process_cart_item(cart_item, request)

	This will be called for every line item in the Cart:
Line items typically contain: product, unit_price, quantity and a dictionary with extra row
information.

If configured, the starting line total for every line (unit price * quantity) is computed
by the DefaultCartModifier, which typically is listed as the first modifier. Posterior
modifiers can optionally change the cart items line total.

After processing all cart items with all modifiers, these line totals are summed up to form
the carts subtotal, which is used by method process_cart.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

9. Payment Providers

Payment Providers are simple classes, which create an interface from an external Payment Service
Provider [https://en.wikipedia.org/wiki/Payment_service_provider] (shortcut PSP) to our djangoSHOP framework.

Payment Providers must be aggregates of a Payment Cart Modifier. Here the Payment
Cart Modifier computes extra fees when selected as a payment method, whereas our Payment Provider
class, handles the communication with the configured PSP, whenever the customer submits the purchase
request.

In djangoSHOP Payment Providers normally are packed into separate plugins, so here we will
show how to create one yourself instead of explaining the configuration of an existing Payment
gateway.

A precautionary measure during payments with credit cards is, that the used e-commerce
implementation never sees the card numbers or any other sensible information. Otherwise those
merchants would have to be PCI-DSS certified [https://www.pcicomplianceguide.org/pci-faqs-2/], which is an additional, but often unnecessary
bureaucratic task, since most PSPs handle that task for us.

9.1. Checkout Forms

Since the merchant is not allowed to “see” sensitive credit card information, some Payment Service
Providers require, that customers are redirected to their site so that there, they can enter their
credit card numbers. This for some customers is disturbing, because they visually leave the current
shop site.

Therefore other PSPs allow to create form elements in HTML, whose content is send to their site
during the purchase task. This can be done using a POST submission, followed by a redirection back
to the client. Other providers use Javascript for submission and return a payment token to the
customer, who himself forwards that token to the shopping site.

All in all, there are so many different ways to pay, that it is quite tricky to find a generic
solution compatible for all of them.

Here djangoSHOP uses some Javascript during the purchase operation. Lets explain how:

9.1.1. The Purchasing Operation

During checkout, the clients final step is to click onto a button labeled something like “Buy Now”.
This button belongs to an AngularJS controller, provided by the directive shop-dialog-proceed.
It may look similar to this:

<button shop-dialog-proceed ng-click="proceedWith('PURCHASE_NOW')" class="btn btn-success">Buy Now</button>

Whenever the customer clicks onto that button, the function proceedWith('PURCHASE_NOW') is
invoked in the scope of the AngularJS controller, belonging to the given directive.

This function first uploads the current checkout forms to the server. There they are validated, and
if everything is OK, an updated checkout context is send back to the client. See
shop.views.checkout.CheckoutViewSet.upload() for details.

Next, the success handler of the previous submission looks at the given action. In proceedWith,
we used the magic keyword PURCHASE_NOW, which starts a second submission to the server,
requesting to begin with the purchase operation (See shop.views.checkout.CheckoutViewSet.purchase()
for details.). This method determines he payment provider previously chosen by the customer. It
then invokes the method get_payment_request() of that provider, which returns a Javascript
expression.

On the client, this returned Javascript expression is passed to the eval() [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval] function and executed;
it then normally starts to submit the payment request, sending all credit card data to the given
PSP.

While processing the payment, PSPs usually need to communicate with the shop framework, in order to
inform us about success or failure of the payment. To communicate with us, they may need a few
endpoints. Each Payment provider may override the method get_urls() returning an urlpattern,
which then is used by the Django URL resolving engine.

class MyPSP(PaymentProvider):
 namespace = 'my-psp-payment'

 def get_urls(self):
 urlpatterns = patterns('',
 url(r'^success$', self.success_view, name='success'),
 url(r'^failure$', self.failure_view, name='failure'),
)
 return urlpatterns

 def get_payment_request(self, cart, request):
 js_expression = 'scope.charge().then(function(response) { $window.location.href=response.data.thank_you_url; });'
 return js_expression

 @classmethod
 def success_view(cls, request):
 # approve payment using request data returned by PSP
 cart = CartModel.objects.get_from_request(request)
 order = OrderModel.objects.create_from_cart(cart, request)
 order.add_paypal_payment(payment.to_dict())
 order.save()
 thank_you_url = OrderModel.objects.get_latest_url()
 return HttpResponseRedirect(thank_you_url)

 @classmethod
 def failure_view(cls, request):
 """Redirect onto an URL informing the customer about a failed payment"""
 cancel_url = Page.objects.public().get(reverse_id='cancel-payment').get_absolute_url()
 return HttpResponseRedirect(cancel_url)

Note

The directive shop-dialog-proceed evaluates the returned Javascript expression inside
a chained then(...)-handler from the AngularJS promise framework [https://docs.angularjs.org/api/ng/service/$q]. This means that such a
function may itself return a new promise, which is resolved by the next then()-handler.

As we can see in this example, by evaluating arbitrary Javascript on the client, combined with
HTTP-handlers for any endpoint, djangoSHOP is able to offer an API where adding new Payment
Service Providers doesn’t require any special tricks.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

10. Order

During checkout, at a certain point the customer has to click on a button named “Purchase Now”.
This operation performs quite a few tasks, one of them is to convert the cart with its items into
an order. The final task is to reset the cart, which means to remove its content. This operation
is atomic and not reversible.

10.1. Order Models

An order consists of two models classes Order and OrderItem, both inheriting from
BaseOrder and BaseOrderItem respectively. As with most models in djangoSHOP, they are
Deferred Model Pattern, so that inheriting from a base class automatically sets the
foreign keys to the appropriate model. This gives the programmer the flexibility to add as many
fields to the order, as the merchant requires for his special implementation.

In most use-cases, the default order implementation will do the job. These default classes can be
found at shop.models.defaults.order.Order and
shop.models.defaults.order_item.OrderItem. To materialize the default implementation, it
is enough to import these two files into the merchants shop project. Otherwise the programmer
may create his own order implementation inheriting from BaseOrder and/or BaseOrderItem.

Note

Assure that the model OrderItem is imported (and materialized) before model
Product and classes derived from it.

The order item quantity can not always be represented by natural numbers, therefore this field must
be added to the OrderItem implementation rather than its base class. Since the quantity is
copied from the cart item to the order item, its field type must must correspond to that of
CartItem.quantity.

10.1.1. Create an Order from the Cart

Whenever the customer performs the purchase operation, the cart object is converted into a new order
object by invoking:

from shop.models.order import OrderModel

order = OrderModel.objects.create_from_cart(cart, request)

This operation is atomic and can take some time. It normally is performed by the payment provider,
whenever a successful payment was received.

Since the merchants implementation of Cart, CartItem, Order and OrderItem may
contain extra fields the shop framework isn’t aware of, these fields have to be converted from the
cart to the order objects during the purchasing operation.

If required the merchant’s implementation of Order shall override the method
populate_from_cart(cart, request), which provides a hook to copy those extra fields from the cart
object to the order object.

Similarly the merchant’s implementation of OrderItem shall override the method
populate_from_cart_item(cart_item, request), which provides a hook to copy those extra fields
from the cart item to the order item object.

10.1.2. Order Numbers

In commerce it is mandatory that orders are numbered using a unique and continuously increasing
sequence. Each merchant has his own way to generate this sequence numbers and in some
implementations it may even come from an external generator, such as an ERP system. Therefore
djangoSHOP does not impose any numbering scheme for the orders. This intentionally is left
over to the merchant’s implementation.

Each Order model must implement two methods, one to create and and one to retrieve the order
numbers. A simple implementation may look like this:

from django.db import models
from django.utils.datetime_safe import datetime
from shop.models import order

class Order(order.BaseOrder):
 number = models.PositiveIntegerField("Order Number", null=True, default=None, unique=True)

 def get_or_assign_number(self):
 if self.number is None:
 epoch = datetime.now().date()
 epoch = epoch.replace(epoch.year, 1, 1)
 qs = Order.objects.filter(number__isnull=False, created_at__gt=epoch)
 qs = qs.aggregate(models.Max('number'))
 try:
 epoc_number = int(str(qs['number__max'])[4:]) + 1
 self.number = int('{0}{1:05d}'.format(epoch.year, epoc_number))
 except (KeyError, ValueError):
 # the first order this year
 self.number = int('{0}00001'.format(epoch.year))
 return self.get_number()

 def get_number(self):
 return '{0}-{1}'.format(str(self.number)[:4], str(self.number)[4:])

Here the first four digits specify the year in which the order was generated, whereas the last five
digits are a continuous increasing sequence.

10.2. Order Views

Displaying the last or former orders in djangoSHOP is as simple, as adding two pages to the CMS.
Change into the Django admin backend and enter into the CMS page tree. At an appropriate location
in that tree add a new page. As page title use “My Orders”, “Ihre Bestellungen”, “Mis Pedidos”, or
whatever is appropriate in the natural language used for that site. Multilingual CMS installations
offer a page title for each language.

In the CMS page editor click onto the link named Advanced Settings at the bottom of the popup
window. As template, chose the default one, provided it contains at least one big placeholder [http://django-cms.readthedocs.org/en/latest/introduction/templates_placeholders.html#placeholders].

Enter “shop-order” into the Id-field just below. This identifier is required by some templates
which link directly onto the orders list view page. If this field is not set, some links onto this
page might not work properly.

The Order Views must be rendered by their own CMS apphook [http://docs.django-cms.org/en/latest/how_to/apphooks.html]. Locate the field Application and
chose “View Orders”.

Below this “My Orders” page, add another page named “Thanks for Your Order”, “Danke für Ihre
Bestellung” or “Gracias por su pedido”. Change into the Advanced Settings view and as the
rendering template select “Inherit the template of the nearest ancestor”. Next enter
“shop-order-last” into the Id-field just below. As Application chose again
“View Orders”.

10.2.1. Add the Order list view via CMS-Cascade Plugin

Click onto View on site and change into front-end editing mode to use the grid-system of
djangocms-cascade [http://djangocms-cascade.readthedocs.org/en/latest/]. Locate the main placeholder and add a Row followed by at least one
Column plugin; both can be found in section Bootstrap. Below that column plugin, add a
child named Order Views from section Shop.

We have to perform this operation a second time for the page named “Thanks for Your Order”. The
context menus for copying and pasting may be helpful here.

Note the the page “My Orders” handles two views: By invoking it as a normal CMS page, it renders
a list of all orders the currently logged in customer has purchased at this shop:

[image: order-list-view]

Clicking on one of the orders in this list, changes into a detail view, where one can see a list of
items purchased during that shopping session:

[image: order-detail-view]

The rendered list is a historical snapshot of the cart in the moment of purchase. If in the meantime
the prices of products, tax rates, shipping costs or whatever changed, then that order object always
keeps the values at that time in history. This even applies to translations. Strings are translated
into their natural language on the moment of purchase. Therefore the labels added to the last rows
of the cart, always are rendered in the language which was used during the checkout process.

10.2.1.1. Render templates

The path of the templates used to render the order views is constructed using the following rules:

	Look for a folder named according to the project’s name, ie. settings.SHOP_APP_LABEL in lower
case. If no such folder can be found, then use the folder named shop.

	Search for a subfolder named order.

	Search for a template named list.html or detail.html.

These templates are written to be easily extensible by the customized templates. To override them,
add a template with the path, say myshop/order/list.html to the projects template folder.

10.3. Order Workflows

Order Workflows are simple plugins that allow the merchant to define rules in a programmatic way,
which actions to perform, whenever a certain event happened. A typical event is the confirmation
of a payment, which itself triggers further actions, say to print a delivery note.

Instead of implementing each possible combination for all of these use cases, the djangoSHOP
framework offers a Finite State Machine [https://gist.github.com/Nagyman/9502133], where only selected state transition can be marked as
possible. These transition further can trigger other events themselves. This prevents to accidently
perform invalid actions such as fulfilling orders, which haven’t been paid yet.

In class shop.models.order.BaseOrder contains an attribute status which is of type
FSMField. In practice this is a char-field, which can hold preconfigured states, but which
can not be changed by program code. Instead, by calling specially decorated class methods, this
state then changes from one or more allowed source states into one predefined target state. We
denote this as a state transition.

An incomplete example:

class Order(models.Model):
 # other attributes

 @transition(field=status, source='new', target='created')
 def populate_from_cart(self, cart, request):
 # perform some side effects ...

Whenever an Order object is initialized, its status is new and not yet persisted in the
database. As we have seen earlier, this object must be populated from the cart. If this succeeds,
the status of our new Order object switches to created. This is the default state before
proceeding to our payment providers.

In djangoSHOP the merchant can add as many payment providers he wants. This is done in
settings.py through the configuration directive SHOP_ORDER_WORKFLOWS which takes a list of
so called “Order Workflow Mixin” classes. On bootstrapping the application and constructing the
Order class, it additionally inherits from these mixin classes. This gives the merchant an easy
to configure, yet very powerful tool to model the selling process of his e-commerce site according
to his needs. Say, we want to accept bank transfer in advance, so we must add
'shop.payment.defaults.PayInAdvanceWorkflowMixin' to our configuration setting. Additionally we
must assure that the checkout process has been configured to offer the corresponding cart modifier:

SHOP_CART_MODIFIERS = (
 ...
 'shop.modifiers.defaults.PayInAdvanceModifier',
 ...
)

This mixin class contains a few transition methods, lets for instance have a closer look onto

@transition(field='status', source=['created'], target='awaiting_payment')
def awaiting_payment(self):
 """Signals that an Order awaits payments."""

This method actually does nothing, beside changing the status from “created” to
“awaiting_payment”. It is invoked by the method get_payment_request() from
ForwardFundPayment, which is the default payment provider of the configured
PayInAdvanceModifier cart modifier.

The class PayInAdvanceWorkflowMixin has two other transition methods worth mentioning:

@transition(field='status', source=['awaiting_payment'],
 target='prepayment_deposited', conditions=[is_fully_paid],
 custom=dict(admin=True, button_name=_("Mark as Paid")))
def prepayment_fully_deposited(self):
 """Signals that the current Order received a payment."""

This method can be invoked by the Django admin backend when saving an existing Order object, but
only under the condition that it is fully paid. The method is_fully_paid() iterates over all
payments associated with its Order object, sums them up and compares them against the total. If the
entered payment equals or exceeds the order’s total, this method returns True and the condition
for the given transition is met. This then adds a button labeled “Mark as Paid” at the bottom of
the admin view. Whenever the merchant clicks on this button, the above method
prepayment_fully_deposited is invoked. This then changes the order’s status from
“awaiting_payment” to “prepayment_deposited”. The Notifications of
djangoSHOP can intercept this transition change and perform preconfigured action, such as
sending a payment confirmation email to the customer.

Now that the order has been paid, it time to fulfill it. For this a merchant can use the workflow
mixin class shop.shipping.defaults.CommissionGoodsWorkflowMixin, which gives him a
hand to keep track on the fulfillment of each order. Since this class doesn’t know anything
about an order status of “prepayment_deposited” (this is a private definition of the class
PayInAdvanceWorkflowMixin), djangoSHOP provides a status to mark the payment of an order as
confirmed. Therefore another transition is added to our mixin class, which is invoked automatically
by the framework whenever the status changes to “prepayment_deposited”:

@transition(field='status', source=['prepayment_deposited',
 'no_payment_required'], custom=dict(auto=True))
def acknowledge_prepayment(self):
 """Acknowledge the payment."""
 self.acknowledge_payment()

This status, “payment_confirmed”, is known by all other workflow mixin classes and must be used
as the source argument for their transition methods.

For further details on Finite State Machine transitions, please refer to the FSM docs [https://github.com/kmmbvnr/django-fsm]. This
however does not cover the contents of dictionary custom. One of the attributes in custom
is button="Any Label" as explained in the FSM admin docs [https://github.com/gadventures/django-fsm-admin]. The other is auto=True
and has been introduced by djangoSHOP itself. It is used to automatically proceed from
one target to another one, without manual intervention, such as clicking onto a button.

10.3.1. Signals

Each state transition emits a signal [https://docs.djangoproject.com/en/stable/topics/signals/] before and after performing the status change. These signals,
pre_transition and post_transition can be received by any registered signal handler. In
djangoSHOP, the notification framework listens for these events and creates appropriate
notification e-mails, if configured.

But sometimes simple notifications are not enough, and the merchant’s implementation must perform
actions in a programmatic way. This for instance could be a query, which shall be sent to the goods
management database, whenever a payment has been confirmed successfully.

In Django, we typically register signal handlers in the ready method of the merchant’s
application configuration [https://docs.djangoproject.com/en/1.9/ref/applications/#application-configuration]:

myshop/apps.py

from django.apps import AppConfig

class MyShopConfig(AppConfig):
 name = 'my_shop'

 def ready(self):
 from django_fsm.signals import post_transition
 post_transition.connect(order_event_notification)

def order_event_notification(sender, instance=None, target=None, **kwargs):
 if target == 'payment_confirmed':
 # do whatever appropriate

In the above order event notification, use instance to access the corresponding Order
object.

10.3.2. Finite State Machine Diagram

If graphviz [http://www.graphviz.org/] is installed on the operating system, it is pretty simple to render a graphical
representation of the currently configured Finite State Machine. Simply invoke:

./manage.py ./manage.py graph_transitions -o fsm-graph.png

Applied to our demo shop, this gives the following graph:

[image: fsm-graph]

10.4. Order Admin

The order editor likely is the most heavily used for each shop installation. Here the merchant
must manage all incoming orders, payments, customer annotations, deliveries, etc. By automating
common tasks, the backend shall prevent careless mistakes. For instance, it should be impossible
to ship unpaid goods or to cancel a delivered order.

Since the djangoSHOP framework does not know which class model is used to implement an
Order, it intentionally doesn’t register its prepared administration class for that model.
This has to be done by the project implementing the show. It allows to add additional fields and
other mixin classes, before registration.

For instance, the admin class used to manage the Order model in our shop project, could be
implemented as:

myshop/admin.py

from django.contrib import admin
from shop.models.order import OrderModel
from shop.admin.order import (PrintOrderAdminMixin,
 BaseOrderAdmin, OrderPaymentInline, OrderItemInline)

@admin.register(OrderModel)
class OrderAdmin(PrintOrderAdminMixin, BaseOrderAdmin):
 fields = BaseOrderAdmin.fields + (
 ('shipping_address_text', 'billing_address_text',),)
 inlines = (OrderItemInline, OrderPaymentInline,)

The fields shipping_address_text and billing_address_text are not part of the abstract model
class BaseOrder and therefore must be referenced separately.

Another useful mixin class to be added to this admin backend is PrintOrderAdminMixin. Whenever
the status of an order is set to “Pick the Goods” a button labeled “Print Delivery Note” is
added to the order admin form. Clicking on that button displays one ore more pages optimized for
printing.

On the other hand, when the status of an order is set to “Pack the Goods” a button labeled
“Print Invoice” is added to the order admin form.

The template for the invoice and delivery note can easily be adopted to the corporate design using
plain HTML and CSS.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

11. Managing the Deliver Process

Depending on the merchant’s setup, an order can be considered as one inseparably unit, or if partial
shipping shall be allowed, as a collection of single products, which can be delivered individually.

To enable partial shipping, assure the instantiation of both classes
shop.models.delivery.BaseDelivery and shop.models.delivery.BaseDeliveryItem. The
easiest way to do this is to import the materialized classes into an existing model class:

from shop.models.defaults.delivery import Delivery, DeliveryItem

11.1. Partial Delivery Workflow

The class implementing the Order, requires additional methods provided by the mixin class
shop.shipping.delivery.PartialDeliveryWorkflowMixin. Mix this class into the Order
class by configuring

SHOP_ORDER_WORKFLOWS = (
 # other workflow mixins
 'shop.shipping.defaults.PartialDeliveryWorkflowMixin',
)

Note

Do not combine this mixin with the class CommissionGoodsWorkflowMixin.

11.2. Administration Backend

To control partial delivery, add the class shop.admin.delivery.DeliveryOrderAdminMixin
to the amin class class implementing an Order:

myshop/admin/order.py

from django.contrib import admin
from shop.admin.order import BaseOrderAdmin
from shop.models.defaults.order import Order
from shop.admin.delivery import DeliveryOrderAdminMixin

@admin.register(Order)
class OrderAdmin(DeliveryOrderAdminMixin, BaseOrderAdmin):
 pass

11.3. Implementation Details

When partial delivery is activated, two additional tables are added to the database, one for each
delivery and one for each delivered order item. This allows us to split up the quantity of in
ordered item into two or more delivery objects. This can be useful, if a product is sold out, but
the merchant wants to ship whatever is available on stock. He then creates a delivery object
and assigns the available quantity to each linked delivery item.

If a product is not available at all anymore, the merchant can alternatively cancel that order item.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

12. Designing an Address Model

Depending on the merchant’s needs, the business model and the catchment area of the site, the used
address models may vary widely. Since djangoSHOP allows to subclass almost every database model,
addresses are no exception here. The class shop.models.address.BaseAddress only contains
a foreign key to the Customer model and a priority field used to sort multiple addresses by
relevance.

All the fields which make up an address, such as the addresse, the street, zip code, etc. are part
of the concrete model implementing an address. It is the merchant’s responsibility to define which
address fields are required for his needs. Therefore the base address model does not contain
any address related fields, they instead have to be declared by the merchant. A concrete
implementation of the shipping address model may look like this:

..code-block:: python

from shop.models.address import BaseShippingAddress, ISO_3166_CODES

	class ShippingAddress(BaseShippingAddress):

	
	class Meta:

	verbose_name = “Shipping Address”
verbose_name_plural = “Shipping Addresses”

addressee = models.CharField(“Addressee”, max_length=50)
street = models.CharField(“Street”, max_length=50)
zip_code = models.CharField(“ZIP”, max_length=10)
location = models.CharField(“Location”, max_length=50)
country = models.CharField(“Country”, max_length=3,

choices=ISO_3166_CODES)

Since the billing address may contain different fields, it must be defined separately from the
shipping address. To avoid the duplicate definition of common fields for both models, use a mixin
class such as:

..code-block:: python

from django.db import models
from shop.models.address import BaseBillingAddress

	class AddressModelMixin(models.Model):

	addressee = models.CharField(_(“Addressee”), max_length=50)
other fields

	class Meta:

	abstract = True

	class BillingAddress(BaseBillingAddress, AddressModelMixin):

	tax_number = models.CharField(“Tax number”, max_length=50)

	class Meta:

	verbose_name = “Billing Address”
verbose_name_plural = “Billing Addresses”

12.1. Multiple Addresses

In djangoSHOP, if the merchant activates this feature, while setting up the site, customers
can register more than one address. Multiple addresses can be activated, when editing the
Shipping Address Form Plugin or the Billing Address Form Plugin.

Then during checkout, the customer can select one of a previously entered shipping- and
billing addresses, or if he desires add a new one to his list of existing addresses.

12.2. How Addresses are used

Each active Cart object refers to one shipping address object and optionally one billing address
object. This means that the customer can change those addresses whenever he uses the supplied
address forms.

However, when the customer purchases the content of the cart, that address object is converted into
a simple text string and stored inside the newly created Order object. This is to freeze the actual
wording of the entered address. It also assures that the address used for delivery and printed on
the invoice is immune against accidental changes after the purchasing operation.

12.3. Use Shipping Address for Billing

Most customers use their shipping address for billing. Therefore, unless you have really special
needs, it is suggested to share all address fields required for shipping, also with the billing
address. The customer then can reuse the shipping address for billing, if he desires to.
Technically, if the billing address is unset, the shipping address is used anyway, but in
djangoSHOP the merchant has to actively give permission to his customers, to reuse this address
for billing.

The merchant has to actively allow this setting on the site, while editing the Billing Address
Form Plugin.

12.4. Address Formatting

Whenever the customer fulfills the purchase operation, the corresponding shipping- and billing
address objects are rendered into a short paragraph of plain text, separated by the newline
character. This formatted address then is used to print address labels for parcel delivery
and printed invoices.

It is the merchant’s responsibility to format these addresses according to the local practice.
A customized address template must be added into the merchant’s implementation below the
templates folder named myshop/shipping_address.txt or myshop/billing_address.txt.
If both address models share the same fields, we may also use myshop/address.txt as a fallback.
Such an address template may look like:

myshop/address.txt

{{ address.addressee }}{% if address.supplement %}
{{ address.supplement }}{% endif %}
{{ address.street }}
{{ address.zip_code }} {{ address.location }}
{{ address.get_country_display }}

This template is used by the method as_text() as found in each address model.

12.5. Address Forms

The address form, where customers can insert their address, is generated automatically and in a DRY
manner. This means that whenever a field is added, modified or removed from the address model, the
corresponding fields in the address input form, reflect those changes without manual intervention.
When creating the form template, we have to write it using the as_div() method. This method
also adds automatic client-side form validation to the corresponding HTML code.

12.5.1. Address Form Styling

One problem which remains with automatic form generation, is how to style the input fields.
Therefore, djangoSHOP wraps every input field into a <div>-element using a CSS class named
according to the field. This for instance is useful to shorten some input fields and/or place it
onto the same line.

Say, any of our address forms contain the fields zip_code and location as shown in the
example above. Then they may be styled as

.shop-address-zip_code {
 width: 35%;
 display: inline-block;
}

.shop-address-location {
 width: 65%;
 display: inline-block;
 margin-left: -4px;
 padding-left: 15px;
}

so that the ZIP field is narrower and precedes the location field on the same line.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

13. Full Text Search

How should a customer find the product he desires in a more or less unstructured collection of
countless products. Hierarchical navigation often doesn’t work and takes too much time. Thanks to
the way we use the Internet today, most site visitors expect one central search field in the main
navigation bar of a site.

13.1. Search Engine API

In Django the most popular API for full-text search is Haystack [http://haystacksearch.org/]. While other indexing backends,
such as Solr and Whoosh might work as well, the best results have been achieved with Elasticsearch [https://www.elastic.co/].
Therefore this documentation focuses exclusively on Elasticsearch. And since in djangoSHOP every
programming interface uses REST, search is no exception here. Fortunately there is a project named
drf-haystack [https://pypi.python.org/pypi/drf-haystack], which “restifies” our search results, if use use special serializers.

In this document we assume that the merchant only wants to index his products, but not any arbitrary
content, such as for example the terms and condition, as found outside djangoSHOP, but inside
djangoCMS.

13.1.1. Configuration

Install the Elasticsearch binary. Currently Haystack only supports versions smaller than 2. Then
start the service in daemon mode:

./path/to/elasticsearch-version/bin/elasticsearch -d

Check if the server answers on HTTP requests. Pointing a browser onto port http://localhost:9200/
should return something similar to this:

$ curl http://localhost:9200/
{
 "status" : 200,
 "name" : "Ape-X",
 "cluster_name" : "elasticsearch",
 "version" : {
 ...
 },
}

In settings.py, check that 'haystack' has been added to INSTALLED_APPS and connects
the application server with the Elasticsearch database:

HAYSTACK_CONNECTIONS = {
 'default': {
 'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine',
 'URL': 'http://localhost:9200/',
 'INDEX_NAME': 'myshop-default',
 },
}

In case we need indices for different natural languages on our site, we shall add the non-default
languages to this Python dictionary using a different INDEX_NAME for each of them.

Finally configure the site, so that search queries are routed to the correct index using the
currently active natural language:

HAYSTACK_ROUTERS = ('shop.search.routers.LanguageRouter',)

13.2. Indexing the Products

Before we start to search for something, we first must populate its indices. In Haystack one can
create more than one kind of index for each item being added to the search database.

Each product type requires its individual indexing class. Note that Haystack does some
autodiscovery, therefore this class must be added to a file named search_indexex.py. For our
product model SmartCard, this indexing class then may look like:

myshop/search_indexes.py

from shop.search.indexes import ProductIndex
from haystack import indexes

class SmartCardIndex(ProductIndex, indexes.Indexable):
 catalog_media = indexes.CharField(stored=True,
 indexed=False, null=True)
 search_media = indexes.CharField(stored=True,
 indexed=False, null=True)

 def get_model(self):
 return SmartCard

 # more methods ...

While building the index, Haystack performs some preparatory steps:

13.2.1. Populate the reverse index database

The base class for our search index declares two fields for holding the reverse indexes and a few
additional fields to store information about the indexed product entity:

shop/indexes.py

class ProductIndex(indexes.SearchIndex):
 text = indexes.CharField(document=True,
 indexed=True, use_template=True)
 autocomplete = indexes.EdgeNgramField(indexed=True,
 use_template=True)

 product_name = indexes.CharField(stored=True,
 indexed=False, model_attr='product_name')
 product_url = indexes.CharField(stored=True,
 indexed=False, model_attr='get_absolute_url')

The first two index fields [http://django-haystack.readthedocs.org/en/latest/searchfield_api.html] require a template which renders plain text, which is used to build a
reverse index in the search database. The indexes.CharField is used for a classic reverse text
index, whereas the indexes.EdgeNgramField is used for autocompletion [http://django-haystack.readthedocs.org/en/latest/autocomplete.html?highlight=autocompletion].

Each of these index fields require their own template. They must be named according to the
following rules:

search/indexes/myshop/<product-type>_text.txt

and

search/indexes/myshop/<product-type>_autocomplete.txt

and be located inside the project’s template folder. The <product-type> is the classname in
lowercase of the given product model. Create two individual templates for each product type, one
for text search and one for autocompletion.

An example:

search/indexes/smartcard_text.txt

{{ object.product_name }}
{{ object.product_code }}
{{ object.manufacturer }}
{{ object.description|striptags }}
{% for page in object.cms_pages.all %}
{{ page.get_title }}{% endfor %}

The last two fields are used to store information about the product’s content, side by side with the
indexed entities. That’s a huge performance booster, since this information otherwise would have to
be fetched from the relational database, item by item, and then being rendered while preparing the
search query result.

We can also add fields to our index class, which stores pre-rendered HTML. In the above example,
this is done by the fields catalog_media and search_media. Since we do not provide
a model attribute, we must provide two methods, which creates this content:

myshop/search_indexes.py

class SmartCardIndex(ProductIndex, indexes.Indexable):
 # other fields and methods ...

 def prepare_catalog_media(self, product):
 return self.render_html('catalog', product, 'media')

 def prepare_search_media(self, product):
 return self.render_html('search', product, 'media')

These methods themselves invoke render_html which takes the product and renders it using
a templates named catalog-product-media.html or search-product-media.html respectively.
These templates are looked for in the folder myshop/products or, if not found there in the
folder shop/products. The HTML snippets for catalog-media are used for autocompletion search,
whereas search-media is used for normal a normal full-text search invocation.

13.2.2. Building the Index

To build the index in Elasticsearch, invoke:

./manage.py rebuild_index --noinput

Depending on the number of products in the database, this may take some time.

13.3. Search Serializers

Haystack for Django REST Framework [https://drf-haystack.readthedocs.org/en/latest/] is a small library aiming to simplify using Haystack with
Django REST Framework. It takes the search results returned by Haystack, treating them the similar
to Django database models when serializing their fields. The serializer used to render the content
for this demo site, may look like:

myshop/serializers.py

from rest_framework import serializers
from shop.search.serializers import ProductSearchSerializer as ProductSearchSerializerBase
from .search_indexes import SmartCardIndex, SmartPhoneIndex

class ProductSearchSerializer(ProductSearchSerializerBase):
 media = serializers.SerializerMethodField()

 class Meta(ProductSearchSerializerBase.Meta):
 fields = ProductSearchSerializerBase.Meta.fields + ('media',)
 index_classes = (SmartCardIndex, SmartPhoneIndex)

 def get_media(self, search_result):
 return search_result.search_media

This serializer is part of the project, since we must adopt it to whatever content we want to
display on our site, whenever a visitor enters some text into the search field.

13.4. Search View

In the Search View we link the serializer together with a djangoCMS apphook [http://docs.django-cms.org/en/stable/how_to/apphooks.html]. This
ProductSearchApp can be added to the same file, we already used to declare the
ProductsListApp used to render the catalog view:

myshop/cms_app.py

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

class ProductSearchApp(CMSApp):
 name = _("Search")
 urls = ['myshop.urls.search']

apphook_pool.register(ProductSearchApp)

as all apphooks, it requires a file defining its urlpatterns:

myshop/urls/search.py

from django.conf.urls import patterns, url
from shop.search.views import SearchView
from myshop.serializers import ProductSearchSerializer

urlpatterns = patterns('',
 url(r'^', SearchView.as_view(
 serializer_class=ProductSearchSerializer,
)),
)

13.4.1. Search Results

As with all other pages in djangoSHOP, the page displaying our search results is a normal CMS
page too. It is suggested to create this page on the root level of the page tree.

As the page title use “Search” or whatever is appropriate in our natural language. Then we change
into advanced setting.

As a template use one with a big placeholder, since it must display our search results.

In the page Id field, use “shop-search-product”. Some prepared default templates use this hard
coded string.

Set the input field Soft root to checked. This hides this special page from our menu list.

As Application, select “Search”. This selects the apphook we created in the previous section.

Then save the page, change into Structure mode and locate the Main Content Container. Add
a container with a Row and Column. As the child of this column chose the Search Results plugin
from section Shop.

Finally publish the page and enter some text into the search field. It should render a list of
found products.

[image: product-search-results]

13.5. Autocompletion in Catalog List View

As we have seen in the previous example, the Product Search View is suitable to search for any item
in the product database. However, the site visitor sometimes might just refine the list of items
shown in the catalog’s list view. Here loading a new page which uses a completely different layout,
may by inappropriate.

Instead, when someone enters some text into the search field, djangoSHOP starts to narrow down
the list of items in the Catalog List View by typing query terms into the search field. This is
specially useful in situations where hundreds of products are displayed together on the same page
and the customer needs to pick out the correct one by entering some search terms.

To extend the existing Catalog List View for autocompletion, locate the file containing the
urlpatterns, which are used by the apphook ProductsListApp. In doubt, consult the file
myshop/cms_app.py.

Into these urlpatterns add the following entry:

from django.conf.urls import patterns, url
from shop.search.views import SearchView
from myshop.serializers import CatalogSearchSerializer

urlpatterns = patterns('',
 # previous patterns
 url(r'^search-catalog$', SearchView.as_view(
 serializer_class=CatalogSearchSerializer,
)),
 # other patterns
)

Note

Be careful the the regular expression for ^search-catalog$ matches before the
product’s detail view, which usually is looks for patterns matching ^(?P<slug>[\w-]+)$.

The CatalogSearchSerializer used here is very similar to the ProductSearchSerializer we have
seen in the previous section. The only difference is, that instead of the search_media field
is uses the catalog_media field, which renders the result items media in a layout appropriate
for the catalog’s list view.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

14. Notifications

Whenever the status in model Order changes, the built-in Finite State Machine emits a signal
using Django’s signaling framework [https://docs.djangoproject.com/en/stable/topics/signals/]. These signals are received by djangoSHOP‘s Notification
Framework.

14.1. Notification Admin

In Django’s admin backend on Start > Shop > Notification, the merchant can configure which
email to send to whom, depending on each of the emitted events. When adding or editing a
notification, we get a form mask with four input fields:

14.1.1. Notification Identifier

An arbitrary name used to distinguish the different notifications. Its up to the merchant to chose
a meaningful name, “Order confirmed, paid with PayPal” could for instance be a good choice.

14.1.2. Event Type

Each Order Workflows declares a set of transition targets. For instance, the class
PayInAdvanceWorkflowMixin declares these targets: “Awaiting a forward fund payment”,
“Prepayment deposited” and “No Payment Required”.

The merchant can attach a notification for each of these transition targets. Here he must
chose one from the prepared collection.

14.1.3. The Recipient

Transitions events are transmitted for changes in the order status. Each order belongs to one
customer, and normally he’s the first one to be informed, if something changes.

But other persons in the context of this e-commerce site might also be interested into a
notification. In djangoSHOP all staff Users qualify, as it is assumed that they belong to the
group eligible to manage the site.

14.1.4. Email Templates

From the section Start > Post Office > Email Templates, chose on of the
Templates for Emails.

14.1.5. Notification attachments

Chose none, one or more static files to be attached to each email. This typically is a PDF with
the terms and conditions. We normally want to send them only to our customers, but not to the
staff users, otherwise we’d fill up their mail inbox with countless attachments.

14.2. Post Office

Emails for order confirmations are send asynchronously by djangoSHOP. The reason for this is
that it sometimes takes a few seconds for an application server to connect via SMTP, and deliver
an Email. It is unacceptable to do this synchronously during the most sensitive phase of a purchase
operation.

Therefore djangoSHOP sends all generated emails using the queuing mail system Post Office [https://github.com/ui/django-post_office].
This app can hold a set of different email templates, which use the same template language as Django
itself. Emails can be rendered using plain text, HTML or both.

When emails are queued, the chosen template object is stored side by side with its context
serialized as JSON. These queued emails are accessible in Django’s admin backend at
Start > Post Office > Emails. Their status can either be “queued”, “sent” or “failed”.

As an offline operation, ./manage.py send_queued_mail renders and sends queued emails to the
given recipient. During this step, the given template is rendered applying the stored context.
Their status then changes to “sent”, or in case of a problem to “failed”.

If djangoSHOP is configured to run in a multilingual environment, post office renders the email
in the language used during order creation.

14.2.1. Templates for Emails

The Message fields can contain any code, which is valid for Django templates. Frequently, a
summary of the order is rendered in these emails, creating a list of ordered items. This list often
is common across all email templates, and therefore it is recommended to prepare it in a base
template for being reused. In the merchants project folder, create those base email templates
inside the folder templates/myshop/email/.... Then inside the Message fields, these
templates can be loaded and expanded using the well known templatetag

{% extends "myshop/email/somebase.html" %}

14.2.1.1. Caveats when using an HTML Message

Displaying HTML in email clients is a pain. Nobody really can say, which HTML tags are allowed
in which client – and there are many email readers out there, far more than Internet browsers.

Therefore when designing HTML templates for emails, one must be really, really conservative.
It may seem anachronistic, but still a best practice is to use the <table> element, and if
necessary, nest it into their <td> (tables data) elements. Moreover, use inline styles rather
than a <style> element containing blocks of CSS. It is recommended to use a special
email framework [http://emailframe.work/] to avoid nasty quirks, when rendering the templates.

Images can be embedded into HTML emails using two different methods. One is to host the image on the
web-server and to build an absolute URI referring it. Therefore djangoSHOP enriches the object
RenderContext with the base URI for that web-site and stores it as context variable named
ABSOLUTE_BASE_URI. For privacy reasons, most email clients do not load externally hosted images
by default – the customer then must actively request to load them from the external sources.

Another method for adding images to HTML emails is to inline their payload. This means that images,
instead of referring them by URI, are inlined as a base64-encoded string. Easy-thumbnails [http://easy-thumbnails.readthedocs.org/en/latest/usage/#easy_thumbnails.templatetags.thumbnail.data_uri] offers a
template filter named data_uri to perform this operation. This of course blows up the overall
size of an email and shall only be used for small an medium sized images.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

15. REST Serializers

God application programming style is to strictly separate of Models, Views and Controllers.
In typical classic Django jargon, Views act as, what outsiders normally would denote a controller.

Controllers can sometimes be found on the server and sometimes on the client. In djangoSHOP
a significant portion of the controller code is written in JavaScript in the form of Angular
directives [https://docs.angularjs.org/guide/directive].

Therefore, all data exchange between the View and the Model must be performed in a serializable
format, namely JSON. This allows us to use the same business logic for the server, as well as for
the client. It also means, that we could create native mobile apps, which communicate with a
web-application, without ever seeing a line of HTML code.

15.1. Every URL is a REST endpoint

Every URL which is part of part of djangoSHOP, namely the product’s list and detail views, the
cart and checkout views, the order list and detail views, they all are REST endpoints. What does
that mean?

15.1.1. Catalog List View

Say, we are working with the provided demo shop, then the product’s list view is available at
http://localhost:8000/de/shop/ . By appending ?format=json to the URL, the raw data making up
our product list, is rendered as a JSON object. For humans, this is difficult to read, therefore
the Django Restframework offers a version which is more legible: Instead of the above, we invoke the
URL as http://localhost:8000/de/shop/?format=api . This renders the list of products as:

[image: rest-catalog-list]

15.1.2. Catalog Detail View

By following a URL of a product’s detail view, say
http://localhost:8000/de/shop/smart-phones/apple-iphone-5?format=api , one may check the legible
representation such as:

[image: rest-catalog-detail]

15.1.3. Routing to these endpoints

Since we are using CMS pages to display the catalog’s list view, we must provide an apphook [http://django-cms.readthedocs.org/en/stable/introduction/apphooks.html] to
attach it to this page. These catalog apphooks are not part of the shop framework, but must be
created and added to the project:

myshop/cms_app.py

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

class CatalogListApp(CMSApp):
 name = "Catalog List"
 urls = ['myshop.urls.catalog']

apphook_pool.register(CatalogListApp)

We now must add routes for all sub-URLs of the given CMS page implementing the catalog list:

myshop/urls/catalog.py

from django.conf.urls import patterns, url
from rest_framework.settings import api_settings
from shop.rest.filters import CMSPagesFilterBackend
from shop.views.catalog import (AddToCartView, CMSPageProductListView,
 ProductRetrieveView)
from myshop.serializers import (ProductSummarySerializer,
 ProductDetailSerializer)

urlpatterns = patterns('',
 url(r'^$', CMSPageProductListView.as_view(
 serializer_class=ProductSummarySerializer,
)),
 url(r'^(?P<slug>[\w-]+)$', ProductRetrieveView.as_view(
 serializer_class=ProductDetailSerializer,
)),
 url(r'^(?P<slug>[\w-]+)/add-to-cart', AddToCartView.as_view()
),
)

15.1.3.1. Products List View

The urlpattern matching the regular expression ^$ routes onto the catalog list view class
shop.views.catalog.CMSPageProductListView passing in a special serializer class, for
example myshop.serializers.ProductSummarySerializer. This has been customized to represent
our product models in our catalog templates. Since the serialized data now is available as a Python
dictionary or as a plain Javascript object, these templates then can be rendered by the Django
template engine, as well as by the client using for instance AngularJS.

This View class, which inherits from rest_framework.generics.ListAPIView accepts a list of
filters for restricting the list of items.

As we (ab)use CMS pages as categories, we somehow must assign them to our products. Therefore our
example project assigns a many-to-many field named cms_pages to our Product model. Using this
field, the merchant can assign each product to one or more CMS pages, using the apphook
Products List.

This special filter_backend, shop.rest.filters.CMSPagesFilterBackend, is responsible
for restricting selected products on the current catalog list view.

15.1.3.2. Product Detail View

The urlpattern matching the regular expression ^(?P<slug>[\w-]+)$ routes onto the class
shop.views.catalog.ProductRetrieveView passing in a special serializer class,
myshop.serializers.ProductDetailSerializer which has been customized to represent our
product model details.

This View class inherits from rest_framework.generics.RetrieveAPIView. In addition to the
given serializer_class it can accept these fields:

	lookup_field: Model field to look up for the retrieved product. This defaults to slug.

	lookup_url_kwarg: URL argument as used by the matching RegEx. This defaults to slug.

	product_model: Restrict to products of this type. Defaults to ProductModel.

15.1.3.3. Add Product to Cart

The product detail view requires another serializer, the so called AddToCartSerializer. This
serializer is responsible for controlling the number of items being added to the cart and gives
feedback on the subtotal of that potential cart item.

By appending the special string add-to-cart to the URL of a product’s detail view, say
http://localhost:8000/de/shop/smart-phones/apple-iphone-5/add-to-cart?format=api , one may check
the legible representation of this serializer:

[image: rest-add-to-cart]

This serializer is slightly different than the previous ones, because it not only serializes
data and sends it from the server to the client, but it also deserializes data submitted from the
client back to the server using a post-request. This normally is the quantity, but in more
elaborated use cases, it also could contain attributes to distinguish product variations. The
AddSmartPhoneToCartSerializer for example, uses this pattern.

Since we may create our own Add this Product to Cart Serializer for each product type in our shop,
hence overriding its functionality with a customized implementation, such a serializer may return
any other information relevant to the customer. This could for instance be a rebate or just an
update of the availability.

15.1.4. Cart and Checkout Views

CMS pages containing forms to edit the cart and the checkout views, do not require any URL routing,
because their HTML is rendered by the CMS plugin system, whereas form submissions are handled
by hard coded REST endpoints. These URLs are exclusively used by Ajax requests and never visible
in the URL line of our browser. Those endpoints are configured by adding them to the root resolver
at a project level:

myshop/urls.py

urlpatterns = patterns('',
 ...
 url(r'^shop/', include('shop.urls', namespace='shop')),
 ...
)

The serializers of the cart then can be accessed at http://localhost:8000/shop/api/cart/ ,
those of the watch-list at http://localhost:8000/shop/api/watch/ and those handling the various
checkout forms at http://localhost:8000/shop/api/checkout/ . Accessing these URLs can be useful,
specially when debugging JavaScript code.

15.1.5. Order List and Detail Views

The Order List and Detail Views must be accessible through a CMS page, therefore we need a speaking
URL. This is similar to the Catalog List View. This means that the Order Views require the apphook [http://django-cms.readthedocs.org/en/stable/introduction/apphooks.html]
named “View Orders”, which must be configured in the advanced settings of the Order’s CMS pages.
This apphook is shipped with djangoSHOP itself and can be found at shop/cms_app.py.

As with all other Views used by djangoSHOP, the content of this View can also be rendered in
its dictionary structure, instead of HTML. Just append ?format=api to the URL and get the Order
details. In our myshop example this may look like:

[image: rest-order-detail]

15.1.6. Search Result Views

As with the Order View, also the Search Results View is accessible through a CMS page. Say, a
search query directed us to http://localhost:8000/en/search/?q=iphone , then the content of this
query can be made visible by adding &format=api to this URL and get the results in its
dictionary structure. This is specially useful to test if a customized search serializer returns
the expected results. In our myshop example this may look like:

[image: rest-search-results]

15.2. Final Note

In previous versions of djangoSHOP, these kinds of controller implementations had to be
implemented by customized Django View classes. This programming pattern led to bloated code,
because the programmer had to do a case distinction, whether the request was of type GET, POST
or some kind of Ajax. Now djangoSHOP is shipped with reusable View classes, and the merchant’s
implementation must focus exclusively on serializers. This is much easier, because it separates the
business logic from the underlying request-response-cycle.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

1. Add Customized HTML Snippets

When working in Structure Mode as provided by djangoCMS, while editing the DOM tree inside a
placeholder, we might want to add a HTML snippet which is not part of the Cascade ecosystem.
Instead of creating an additional Django template, it often is much easier to just add a customized
plugin. This plugin then is available when editing a placeholder in Structure Mode.

1.1. Customized Cascade plugin

Creating a customized plugin for the merchant’s implementaion of that e-commerce project is very
easy. Just add this small Python module:

myshop/cascade.py

from cms.plugin_pool import plugin_pool
from shop.cascade.plugin_base import ShopPluginBase

class MySnippetPlugin(ShopPluginBase):
 name = "My Snippet"
 render_template = 'myshop/cascade/my-snippet.html'

plugin_pool.register_plugin(MySnippetPlugin)

then, in the project’s settings.py register that plugin together with all other Cascade
plugins:

CMSPLUGIN_CASCADE_PLUGINS = (
 'cmsplugin_cascade.segmentation',
 'cmsplugin_cascade.generic',
 'cmsplugin_cascade.link',
 'shop.cascade',
 'cmsplugin_cascade.bootstrap3',
 'myshop.cascade',
 ...
)

The template itself myshop/cascade/my-snippet.html can contain all templatetags as configured
within the Django project.

Often we want to associate customized styles and/or scripts to work with our new template. Since we
honor the principle of encapsulation [https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)], we somehow must refer to these files in a generic way. This
is where django-sekizai [http://django-sekizai.readthedocs.org/en/stable/] helps us:

myshop/cascade/my-snippet.html

{% load static sekizai_tags %}

{% addtoblock "css" %}<link href="{% static 'myshop/css/my-snippet.css' %}" rel="stylesheet" type="text/css" />{% endaddtoblock %}
{% addtoblock "js" %}<script src="{% static 'myshop/js/my-snippet.js' %}" type="text/javascript"></script>{% endaddtoblock %}

<div>
 my snippet code goes here...
</div>

Note

The main rendering template requires a block such as {% render_block "css" %} and
{% render_block "js" %} which then displays the stylesheets and scripts inside the
appropriate HTML elements.

1.1.1. Further customizing the plugin

Sometimes we require additional parameters which shall be customizable by the merchant, while
editing the plugin. For Cascade this can be achieved very easily. First think about what kind of
data to store, and which form widgets are appropriate for that kind of editor. Say we want to add
a text field holding the snippets title, then change the change the plugin code from above to:

class MySnippetPlugin(ShopPluginBase):
 ...
 glossary_fields = (
 PartialFormField('title',
 widgets.TextInput(),
 label=_("Title")
),
)

Inside the rendering template for that plugin, the newly added title can be accessed as:

<h1>{{ instance.glossary.title }}</h1>
<div>...

Cascade offers many more options than just these. For details please check its
reference guide [http://djangocms-cascade.readthedocs.org/en/stable/].

1.2. Creating a customized Form snippet

Sometimes we might need a dialog form, to store arbitrary information queried from the customer
using a customized form. Say we need to know, when to deliver the goods. This information will be
stored inside the dictionary Cart.extra and thus transferred automatically to Order.extra
whenever the cart object is converted into an order object.

Our form plugin now must inherit from shop.cascade.plugin_base.DialogFormPluginBase instead
of our ordinary shop plugin class:

from cms.plugin_pool import plugin_pool
from shop.models.cart import CartModel
from shop.cascade.plugin_base import DialogFormPluginBase

class DeliveryDatePlugin(DialogFormPluginBase):
 name = "Delivery Date"
 form_class = 'myshop.forms.DeliveryDateForm'
 render_template = 'myshop/checkout/delivery-date.html'

 def get_form_data(self, context, instance, placeholder):
 cart = CartModel.objects.get_from_request(context['request'])
 initial = {'delivery_date': getattr(cart, 'extra', {}).get('delivery_date', '')}
 return {'initial': initial}

DialogFormPluginBase.register_plugin(DeliveryDatePlugin)

here additionally we have to specify a form_class. This form class can inherit from
shop.forms.base.DialogForm or shop.forms.base.DialogModelForm. Its behavior is
almost identical to its Django’s counterparts:

myshop/forms.py

class DeliveryDateForm(DialogForm):
 scope_prefix = 'data.delivery_date'

 date = fields.DateField(label="Delivery date")

 @classmethod
 def form_factory(cls, request, data, cart):
 delivery_date_form = cls(data=data)
 if delivery_date_form.is_valid():
 cart.extra.update(delivery_date_form.cleaned_data)
 return delivery_date_form

The scope_prefix marks the JavaScript object below our AngularJS $scope. This must be an
identifier which is unique across all dialog forms building up our ecosystem of Cascade plugins.

The classmethod form_factory must, as its name implies, create a form object of the class it
belongs to. As in our example from above, we use this to update the cart’s extra dictionary,
whenever the customer submitted a valid delivery date.

The last piece is to put everything together using a form template such as:

templates/myshop/checkout/delivery-date.html

{% extends "shop/checkout/dialog-base.html" %}

{% block dialog_form %}
<form name="{{ delivery_date_form.form_name }}" novalidate>
 {{ delivery_date_form.as_div }}
</form>
{% endblock %}

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

2. Handling Discounts

Generally, this is how you implement a “bulk rebate” module, for instance.

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

3. Taxes

As a general rule, the unit price of a product, shall always contain the net price. When our
products show up in the catalog, their method get_price(request) is consulted by the framework.
Its here where you add tax, depending on the tax model to apply. See below.

3.1. Use Cart Modifiers to handle tax

3.1.1. American tax model

3.1.2. European tax model

3.2. Other considerations

Try to not reinvent the wheel: Other shop systems / frameworks will
contain solutions to this problem. But also ERP-Systems will contain
solutions to this problem.

Maybe it is wise to have a look at projects like Tryton
(http://tryton.org).

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

Changelog for djangoSHOP

0.9.1

	Support for Python 3

	Support for Django-1.9

	Added abstract classes class:shop.models.delivery.BaseDelivery and class:shop.models.delivery.BaseDeliveryItem
for optional partial shipping.

0.9.0

	Separated class:shop.views.catalog.ProductListView into its base and the new class
class:shop.views.catalog.CMSPageProductListView which already has added it appropriate
filters.

	Moved wsgi.py into upper folder.

	Prototype of shop.cascade.DialogFormPluginBase.get_form_data changed. It now accepts
context, instance and placeholder.

	Fixed: It was impossible to enter the credit card information for Stripe and then proceed to the
next step. Using Stripe was possible only on the last step. This restriction has gone.

	It now also is possible to display a summary of your order before proceeding to the final
purchasing step.

	To be more Pythonic, class:shop.models.cart.CartModelManager raises a DoesNotExist exception
instead of None for visiting customers.

	Added method filter_from_request to class:shop.models.order.OrderManager.

	Fixed: OrderAdmin doesn’t ignores error if customer URL can’t be resolved.

	Fixed: Version checking of Django.

	Fixed: Fieldsets duplication in Product Admin.

	CartPlugin now can be child of ProcessStepPlugin and BootstrapPanelPlugin.

	Added ShopAddToCartPlugin.

	All Checkout Forms now can be rendered as editable or summary.

	All Dialog Forms now can declare a legend.

	In DialogFormPlugin, method form_factory always returns a form class instead of an error
dict if form was invalid.

	Added method OrderManager.filter_from_request, which behaves analogous to
CartManager.get_from_request.

	Fixed lookups using MoneyField by adding method get_prep_value.

	Dropped support for South migrations.

	Fixed: In ProductIndex, translations now are always overridden.

	Added class SyncCatalogView which can be used to synchronize the cart with a catalog list
view.

	Content of Checkout Forms is handled by a single transaction.

	All models such as Product, Order, OrderItem, Cart, CartItem can be overridden by the merchant’s
implementation. However, we are using the deferred pattern, instead of configuration settings.

	Categories must be implemented as separate djangoSHOP addons. However for many implementations
pages form the djangoCMS can be used as catalog list views.

	The principle on how cart modifiers work, didn’t change. There more inversion of control now, in
that sense, that now the modifiers decide themselves, how to change the subtotal and final total.

	Existing Payment Providers can be integrated without much hassle.

Since version 0.2.1 a lot of things have changed. Here is a short summary:

	The API of djangoSHOP is accessible through a REST interface. This allows us to build MVC on
top of that.

	Changed the two OneToOne relations from model Address to User, one was used for shipping, one for
billing. Now abstract BaseAddress refers to the User by a single ForeignKey giving the ability to
link more than one address to each user. Additionally each address has a priority field for
shipping and invoices, so that the latest used address is offered to the client.

	Replaced model shop.models.User by the configuration directive settings.AUTH_USER_MODEL, to be
compliant with Django documentation.

	The cart now is always stored inside the database; there is no more distinction between session
based carts and database carts. Carts for anonymous users are retrieved using the visitor’s
session_key. Therefore we don’t need a utility function such get_or_create_cart anymore.
Everything is handled by the a new CartManager, which retrieves or creates or cart based on
the request session.

	If the quantity of a cart item drops to zero, this items is not automatically removed from the
cart. There are plenty of reasons, why it can make sense to have a quantity of zero.

	A WatchList (some say wish-list) has been added. This simply reuses the existing Cart model,
where the item quantity is zero.

	Currency and CurrencyField are replaced by Money and MoneyField. These types not only store the
amount, but also in which currency this amount is. This has many advantages:
	An amount is rendered with its currency symbol as a string. This also applies for JSON
data-structures, rendered by the REST framework.

	Money types of different currencies can not be added/substracted by
accident. Normal installations woun’t be affected, since each shop system
must specify its default currency.

	Backend pools for Payment and Shipping have been removed. Instead, a Cart Modifier can inherit
from PaymentModifier or ShippingModifier. This allows to reuse the Cart Modifier
Pool for these backends and use the modifiers logic for adding extra rows to he carts total.

	The models OrderExtraRow and OrderItemExtraRow has been replaced by a JSONField
extra_rows in model OrderModel and OrderItemModel. OrderAnnotation now
also is stored inside this extra field.

	Renamed for convention with other Django application:
	date_created -> created_at

	last_updated -> updated_at

	ExtraOrderPriceField -> BaseOrderExtraRow

	ExtraOrderItemPriceField -> BaseItemExtraRow

Version 0.2.1

This is the last release on the old code base. It has been tagged as 0.2.1 and can be examined for
historical reasons. Bugs will not be fixed in this release.

Version 0.2.0

	models.FloatField are now automatically localized.

	Support for Django 1.2 and Django 1.3 dropped.

	Product model now has property can_be_added_to_cart which is checked before adding the product to cart

	In cart_modifiers methods get_extra_cart_price_field and get_extra_cart_item_price_field
accepts the additional object request which can be used to calculate the price
according to the state of a session, the IP-address or whatever might be useful.
Note for backwards compatibility: Until version 0.1.2, instead of the request
object, an empty Python dictionary named state was passed into the cart
modifiers. This state object could contain arbitrary data to exchange information
between the cart modifiers. This Python dict now is a temporary attribute of the
request object named cart_modifier_state. Use it instead of the
state object.

	Cart modifiers can add an optional data field beside label and value
for both, the ExtraOrderPriceField and the ExtraOrderItemPriceField model.
This extra data field can contain anything serializable as JSON.

Version 0.1.2

	cart_required and order_required decorators now accept a reversible url
name instead and redirect to cart by default

	Added setting SHOP_PRICE_FORMAT used in the priceformat filter

	Separation of Concern in OrderManager.create_from_cart:
It now is easier to extend the Order class with customized
data.

	Added OrderConfirmView after the shipping backend views that can be easily
extended to display a confirmation page

	Added example payment backend to the example shop

	Added example OrderConfirmView to the example shop

	Unconfirmed orders are now deleted from the database automatically

	
	Refactored order status (requires data migration)

	
	removed PAYMENT and added CONFIRMING status

	assignment of statuses is now linear

	moved cart.empty() to the PaymentAPI

	orders now store the pk of the originating cart

	
	Checkout process works like this:

	
	CartDetails

	
	CheckoutSelectionView

	
	POST –> Order.objects.create_from_cart(cart) removes all orders originating from this cart that have status < CONFIRMED(30)

	creates a new Order with status PROCESSING(10)

	
	ShippingBackend

	
	self.finished() sets the status to CONFIRMING(20)

	
	OrderConfirmView

	
	self.confirm_order() sets the status to CONFIRMED(30)

	
	PaymentBackend

	
	self.confirm_payment() sets the status to COMPLETED(40)

	empties the related cart

	
	ThankYouView

	
	does nothing!

Version 0.1.1

	Changed CurrencyField default decimal precision back to 2

Version 0.1.0

	Bumped the CurrencyField precision limitation to 30 max_digits and 10 decimal
places, like it should have been since the beginning.

	Made Backends internationalizable, as well as the BillingShippingForm
thanks to the introduciton of a new optional backend_verbose_name attribute
to backends.

	Added order_required decorator to fix bug #84, which should be used on all
payment and shipping views

	Added cart_required decorator that checks for a cart on the checkout view #172

	Added get_product_reference method to Product (for extensibility)

	Cart object is not saved to database if it is empty (#147)

	Before adding items to cart you now have to use get_or_create_cart with save=True

	Changed spelling mistakes in methods from payed to paid on the Order
model and on the API. This is potentially not backwards compatible in some
border cases.

	Added a mixin class which helps to localize model fields of type DecimalField
in Django admin view.

	Added this newly created mixin class to OrderAdmin, so that all price fields
are handled with the correct localization.

	Order status is now directly modified in the shop API

	CartItem URLs were too greedy, they now match less.

	In case a user has two carts, one bound to the session and one to the user,
the one from the session will be used (#169)

	Fixed circular import errors by moving base models to shop.models_bases and
base managers to shop.models_bases.managers

Version 0.0.13

(Version cleanup)

Version 0.0.12

	Updated translations

	Split urls.py into several sub-files for better readability, and put in a
urls shubfolder.

	Made templates extend a common base template

	Using a dynamically generated form for the cart now to validate user input.
This will break your cart.html template. Please refer to the changes in
cart.html shipped by the shop to see how you can update your own template.
Basically you need to iterate over a formset now instead of cart_items.

	Fixed a circular import problem when user overrode their own models

Version 0.0.11

	Performance improvement (update CartItems are now cached to avoid unnecessary
db queries)

	Various bugfixes

Version 0.0.10

	New hooks were added to cart modifiers: pre_process_cart and
post_process_cart.

	[API change] Cart modifiers cart item methods now recieve a state object,
that allows them to pass information between cart modifiers cheaply.

	The cart items are not automatically saved after process_cart_item anymore.
This allows for cart modifiers that change the cart’s content (also
deleting).

	Changed the version definition mechanism. You can now: import shop;
shop.__version__. Also, it now conforms to PEP 386

	[API Change] Changed the payment backend API to let get_finished_url
and get_cancel_url return strings instead of HttpResponse objects (this
was confusing)

	Tests for the shop are now runnable from any project

	added URL to CartItemView.delete()

Version 0.0.9

	Changed the base class for Cart Modifiers. Methods are now expected to return
a tuple, and not direectly append it to the extra_price_fields. Computation of
the total is not done using an intermediate “current_total” attribute.

	Added a SHOP_FORCE_LOGIN setting that restricts the checkout process to
loged-in users.

Version 0.0.8

	Major change in the way injecting models for extensibility works: the base
models are now abstract, and the shop provides a set of default implementations
that users can replace / override using the settings, as usual. A special
mechanism is required to make the Foreign keys to shop models work. This is
explained in shop.utils.loaders

Version 0.0.7

	Fixed bug in the extensibility section of CartItem

	Added complete German translations

	Added verbose names to the Address model in order to have shipping and
billing forms that has multilingual labels.

Version 0.0.6

(Bugfix release)

	Various bugfixes

	Creating AddressModels for use with the checkout view (the default ones at
least) were bugged, and would spawn new instances on form post, instead of
updating the user’s already existing ones.

	Removed redundant payment method field on the Order model.

	The “thank you” view does not crash anymore when it’s refreshed. It now
displays the last order the user placed.

	Fixed a bug in the shippingbilling view where the returned form was a from
class instead of a from instance.

Version 0.0.5

	Fix a bug in 0.0.4 that made South migration fail with Django < 1.3

Version 0.0.4

	Addresses are now stored as one single text field on the Order objects

	OrderItems now have a ForeignKey relation to Products (to retrieve the
product more easily)

	New templatetag (“products”)

	Made most models swappable using settings (see docs)

	Changed checkout views. The shop uses one single checkout view by default now.

	Created new mechanism to use custom Address models (see docs)

	Moved all Address-related models to shop.addressmodel sub-app

	Removed Client Class

	Removed Product.long_description and Product.short_description from the
Product superclass

	Bugfixes, docs update

Version 0.0.3

	More packaging fixes (missing templates, basically)

Version 0.0.2

	Packaging fix (added MANIFEST.in)

Version 0.0.1

	Initial release to Pypi

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	djangoSHOP 0.9.1 documentation

Contributing

Naming conventions

The official name of this project is djangoSHOP. Third party plugins for djangoSHOP shall
follow the same naming convention as for plugins of djangoCMS: Third party package names shall
start with djangoshop followed by a dash; no space shall be added between django and
shop, for example: djangoshop-stripe

DjangoSHOP should be capitalised at the start of sentences and in title-case headings.

When referring to the package, repositories and any other things in which spaces are not permitted,
use django-shop.

Running tests

It’s important to run tests before committing :)

Setting up the environment

We highly suggest you run the tests suite in a clean environment, using a tool such as
virtualenv [http://pypi.python.org/pypi/virtualenv].

	Clone the repository and cd into it:

git clone https://github.com/awesto/django-shop
cd django-shop

	Create a virtualenv, and activate it:

virtualenv ~/.virtualenvs/django-shop
source ~/.virtualenvs/django-shop/bin/activate

	Install the project in development mode:

pip install -e .

	Install the development requirements:

pip install -r requirements/django18/testing.txt

That’s it! Now, you should be able to run the tests:

py.test tests

We use tox [http://codespeak.net/tox/] as a CI tool. To run the full CI test suite and get a
coverage report, all you have to do is this:

pip install tox
tox

If you work on a certain part of the code base and you want to run the related tests, you may only
want to run the tests affecting that part. In such a case use py.test from your testing
environment and specify the file to test, or for more granularity the class name or even the method
name. Here are two examples:

py.test testshop/test_money.py
py.test testshop/test_money.py -k test_pickle

Measuring which lines of code have been “seen” be the test runner is an important task while
testing. Do this by creating a coverage report, for example with:

coverage run $(which py.test) testshop
coverage report

or if you to test only a specific class

coverage run .tox/py27-django19/bin/py.test testshop/test_money.py
coverage report -m shop/money/*.py

Note

Using tox and py.test is optional. If you prefer the conventional way of running tests, you can
do this: django-admin.py test tests --settings shop.testsettings

Community

Most of the discussion around django SHOP takes place on IRC (Internet Relay Chat), on the freenode
servers in the #django-shop channel.

We also have a mailing list and a google group:

http://groups.google.com/group/django-shop

Code guidelines

Unless otherwise specified, follow PEP 8 [https://www.python.org/dev/peps/pep-0008] as closely as possible.

An exception to PEP 8 is our rules on line lengths. Don’t limit lines of code to 79 characters if it
means the code looks significantly uglier or is harder to read. Consider 100 characters as a soft,
and 119 as a hard limit. Here soft limit means, that unless a line must be splitted across two
lines, it is more readable to stay with a long line.

Use the issue tracker only to report bugs. Send unsolicited pull requests only to fix bug – never
to add new features.

Use stack-overflow to ask for questions related to djangoSHOP.

Most pull requests will be rejected without proper unit testing.

Before adding a new feature, please write a specification using the style for
Django Enhancement Proposals [https://github.com/django/deps/blob/master/final/0001-dep-process.rst].

More information about how to send a Pull Request can be found on GitHub:
http://help.github.com/send-pull-requests/

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	djangoSHOP 0.9.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 shop	

 	
 	
 shop.payment.api	

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	djangoSHOP 0.9.1 documentation

Index

 _
 | A
 | B
 | C
 | G
 | I
 | P
 | S
 | U

_

 	

 	__init__() (shop.payment.api.PaymentBackend method)

A

 	

 	add_extra_cart_item_row() (shop.modifiers.base.BaseCartModifier method)

 	add_extra_cart_row() (shop.modifiers.base.BaseCartModifier method)

 	add_extra_info() (shop.payment.api.PaymentAPI method)

 	

 	arrange_cart_items() (shop.modifiers.base.BaseCartModifier method)

 	arrange_watch_items() (shop.modifiers.base.BaseCartModifier method)

B

 	

 	backend_name (shop.payment.api.PaymentBackend attribute)

 	

 	BaseCartModifier (class in shop.modifiers.base)

C

 	

 	confirm_payment() (shop.payment.api.PaymentAPI method)

G

 	

 	get_order() (shop.payment.api.PaymentAPI method)

 	get_order_for_id() (shop.payment.api.PaymentAPI method)

 	get_order_short_name() (shop.payment.api.PaymentAPI method)

 	get_order_subtotal() (shop.payment.api.PaymentAPI method)

 	

 	get_order_total() (shop.payment.api.PaymentAPI method)

 	get_order_unique_id() (shop.payment.api.PaymentAPI method)

 	get_urls() (shop.payment.api.PaymentBackend method)

I

 	

 	is_order_complete() (shop.payment.api.PaymentAPI method)

 	

 	is_order_payed() (shop.payment.api.PaymentAPI method)

P

 	

 	PaymentAPI (class in shop.payment.api)

 	post_process_cart() (shop.modifiers.base.BaseCartModifier method)

 	pre_process_cart() (shop.modifiers.base.BaseCartModifier method)

 	pre_process_cart_item() (shop.modifiers.base.BaseCartModifier method)

 	

 	process_cart() (shop.modifiers.base.BaseCartModifier method)

 	process_cart_item() (shop.modifiers.base.BaseCartModifier method)

 	
 Python Enhancement Proposals

 	

 	PEP 8

S

 	

 	shop.payment.api (module)

U

 	

 	url_namespace (shop.payment.api.PaymentBackend attribute)

 Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

 howto/secure-catalog.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

How to secure your catalog views

Chances are that you don’t want to allow your users to browse all views of
the shop as anonymous users.

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

_images/processbar-step3.png
Quantity

o 10

Product Unit Price Total
€239.00 €239.00

Subtotal €239.00

19% VAT incl. €38.16

Shipping costs €5.00

Total €244.00

howto/how-to-payment.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

How to create a Payment backend

Payment backends must be listed in settings.SHOP_PAYMENT_BACKENDS

Shop interface

While we could solve this by defining a superclass for all payment backends,
the better approach to plugins is to implement inversion-of-control, and let
the backends hold a reference to the shop instead.

The reference interface for payment backends is located at

		
class shop.payment.api.PaymentAPI

		

Currently, the shop interface defines the following methods:

Common with shipping

		
PaymentAPI.get_order(request)

		Returns the order currently being processed.

		Parameters:		request – a Django request object

		Return type:		an Order instance

		
PaymentAPI.add_extra_info(order, text)

		Adds an extra info field to the order (whatever)

		Parameters:		
		order – an Order instance

		text – a string containing the extra order information

		
PaymentAPI.is_order_payed(order)

		Whether the passed order is fully paid or not

		Parameters:		order – an Order instance

		Return type:		bool

		
PaymentAPI.is_order_complete(order)

		Whether the passed order is in a “finished” state

		Parameters:		order – an Order instance

		Return type:		bool

		
PaymentAPI.get_order_total(order)

		Returns the order’s grand total.

		Parameters:		order – an Order instance

		Return type:		Decimal

		
PaymentAPI.get_order_subtotal(order)

		Returns the order’s sum of item prices (without taxes or S&H)

		Parameters:		order – an Order instance

		Return type:		Decimal

		
PaymentAPI.get_order_short_name(order)

		A short human-readable description of the order

		Parameters:		order – an Order instance

		Return type:		a string with the short name of the order

		
PaymentAPI.get_order_unique_id(order)

		The order’s unique identifier for this shop system

		Parameters:		order – an Order instance

		Return type:		the primary key of the Order (in the default
implementation)

		
PaymentAPI.get_order_for_id(id)

		Returns an Order object given a unique identifier (this
is the reverse of get_order_unique_id())

		Parameters:		id – identifier for the order

		Return type:		the Order object identified by id

Specific to payment

		
PaymentAPI.confirm_payment(order, amount, transaction_id, save=True)

		This should be called when the confirmation from the payment processor was
called and that the payment was confirmed for a given amount. The processor’s
transaction identifier should be passed too, along with an instruction to
save the object or not. For instance, if you expect many small confirmations
you might want to save all of them at the end in one go (?). Finally the
payment method keeps track of what backend was used for this specific payment.

		Parameters:		
		order – an Order instance

		amount – the paid amount

		transaction_id – the backend-specific transaction identifier

		save – a bool that indicates if the changes should be committed
to the database.

Backend interface

The payment backend should define the following interface for the shop to be able
do to anything sensible with it:

Attributes

		
PaymentBackend.backend_name

		The name of the backend (to be displayed to users)

		
PaymentBackend.url_namespace

		“slug” to prepend to this backend’s URLs (acting as a namespace)

Methods

		
PaymentBackend.__init__(shop)

		must accept a “shop” argument (to let the shop system inject a
reference to it)

		Parameters:		shop – an instance of the shop

		
PaymentBackend.get_urls()

		should return a list of URLs (similar to urlpatterns), to be added
to the URL resolver when urls are loaded. These will be namespaced with the
url_namespace attribute by the shop system, so it shouldn’t be done manually.

Security

In order to make your payment backend compatible with the SHOP_FORCE_LOGIN
setting please make sure to add the @shop_login_required decorator to any
views that your backend provides. See how-to-secure-your-views for more
information.

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

_static/rest-search-results.png
Search EX El

A generic view to be used for rendering the result list while searching.

GET /en/search/7q=iphonesfornat=api

HTTP 200 0K
Content-Type: application/json
Vary: Accept

Allow: GET, HEAD, OPTIONS

<
“count": 1,
“next”: null,
“previous”: null,
“results”: [
<
“price": "€ 239.00",
“media’: "<div Class=\"nedia-left\"><
“product_url": "/en/shop/snart-phones/apple-iphone-5",
“product_nane": "Apple iPhone 5"
b

_static/up.png

settings.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

General Settings

This is a small list of the settings defined in django SHOP.

SHOP_PAYMENT_BACKENDS

A list (or iterable) of payment backend class paths.
These classes will be used as the active payment backends by the checkout system,
and so anything in this list will be shown to the customer for him/her to make
a decision

SHOP_SHIPPING_BACKENDS

In a similar fashion, this must be a list of shipping backends. This list is used
to display to the end customer what shipping options are available to him/her during
the checkout process.

SHOP_CART_MODIFIERS

These modifiers function like the django middlewares. The cart will call each of
these classes, in order, every time it is displayed. They are passed every item in
the cart, as well as the cart itself.

SHOP_FORCE_LOGIN

If True, all views after the CartDetails view will
need the user to be authenticated. An anonymous user will be redirected to your
login url. Please read more on authentication in Django’s official
authentication documentation [https://docs.djangoproject.com/en/dev/topics/auth/]
. By default it’s set to False.

SHOP_PRICE_FORMAT

Used by the priceformat template filter to format the price. Default is '%0.2f'

Backend specific Settings

Some backends define extra settings to tweak their behavior. This should be an
exhaustive list of all of the backends and modifiers included in the trunk of
django SHOP.

SHOP_SHIPPING_FLAT_RATE

(Optional)
The “flat rate” shipping module uses this to know how much to charge. This
should be a string, and will be converted to a Decimal by the backend.

Extensibility Settings

Theses settings allow developers to extend the shop’s functionality by replacing
models with their own models. More information on how to use these settings
can be found in the /howto/how-to-extend-django-shop-models section.

SHOP_CART_MODEL

(Optional)
A python classpath to the class you want to replace the Cart model with.
Example value: myproject.models.MyCartModel

SHOP_ADDRESS_MODEL

(Optional)
A python classpath to the class you want to replace the
shop.addressmodel.models.Address model with. See
/howto/how-to-use-your-own-addressmodel for a more complete example.

Example value: myproject.models.MyAddressModel

SHOP_ORDER_MODEL

(Optional)
A python classpath to the class you want to replace the
shop.models.Order model with.

Example value: myproject.models.MyOrderModel

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

authors.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

CORE DEVELOPERS

		Chris Glass (chrisglass)

		Martin Brochhaus

		Jacob Rief

CONTRIBUTORS

		Adrien Lemaire

		airtonix

		Aleš Kocjančič

		Anders Petersson

		Andrés Reyes Monge

		Audrey Roy

		Ben Lopatin

		Benjamin Wohlwend

		Bojan Mihelac

		Chris Morgan

		fivethreeo

		German Larrain

		ikresoft

		Issac Kelly

		Jacek Mitręga

		Jonas Obrist

		Justin Steward

		Kristian Øllegaard

		Martin Ogden

		Mike Yumatov

		Pavel Zhukov

		Per Rosengren

		Raúl Cumplido

		Rolo Mawlabaux

		Simon Luijk

		Sławomir Ehlert

		Stephen Muss

		Thomas Woolford

TRANSLATORS

		Mikhail Kolesnik (Russian)

		Pavel Zhukov (Russian)

		Pedro Gracia (Spanish)

		Arturo Fernandez (Spanish)

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

howto/address-model.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

Address Model

DjangoSHOP is shipped with a default address model as found in
shop.models.defaults.address.Address.

Some people might feel that this model is not suitable for their project. We might be using a
“client” + address model from an external application or simply want to write your own.

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down.png

_static/down-pressed.png

_static/rest-catalog-detail.png
Product Retrieve EX El

View responsible for rendering the products detalls.
Additionally an extra method as shown in products lists, cart lists
and order item lists.

GET /de/shop/smart-phones/apple-iphone-57forma:

HTTP 200 0K
Content-Type: application/json
Vary: Accept

Allow: GET, HEAD, OPTIONS

{

roduct”: {

“product_nane": “Apple iPhone 5"

“created_at”

“updated_at"

“availability": [
[

true,
"9999-12-31723: 59:59. 999"

1

Il

“price": "€ 239,00",

“polynorphic_ctype": 110,

“id": 50,

“cns_pages": [
22,
20

Iy

“inages"
7,
78

1,

“order": 1,

“slug": “apple-iphone-5",
“manufacturer”: 7

_static/rest-add-to-cart.png
Add To Cart EX El

Handle the "Add to Cart" dialog on the products detail page.

POST /de/shop/smartcards/sdxc-card-64gb/add-to-cart

HTTP 202 Accepted
Content-Type: application/json
Vary: Accept

Allows GET, POST, HEAD, OPTIONS

€
uantity"
nit_price '€ 13,99",
ubtotal": "€ 41,07",
product”: 5,
vextra®: {
“product_code": "1004"
b
b
Raw data
Quantity
3

HTML form

_static/comment-close.png

_images/list-view.png
Your Orders

Order Date Sum Shipping Address Status.

5.Dez. 2015 €404.00 John Does Lie Street 987987 London United Kingdom Paid using Stripe

_images/rest-order-detail.png
Order [oerons J§ cer -]

Base View class to render the fulfilled orders for the current user.

GET /en/info/your-orders/57format=api

HTTP 200 0K
Expires: Sat, 23 Jan 2016 21:49:51 GHT

Vary: Accept

Last-Modified: Sat, 23 Jan 2016 21:49:51 GMT

Allow: GET, HEAD, OPTIONS

Cache-Control: no-cache, no-store, must-revalidate, max-age=0
Content-Type: application/json

{

'2016-00005" ,
de/info/ihre-bestellungen/5",
"Packing goods",

product_name": "Apple iPhone 5",
“product_url": "/en/shop/smart-phones/apple-iphone-5",
“smart Phone",

smartphonemode"

‘media-left\"><a href
gee 'mediath

/en/shop/smart-phones/apple-iphone-5'

“line_total"

8.49",

_images/rest-catalog-list.png
Product List EX El

GET /de/shop/7format=api

HTTP 200 0K
Content-Type: application/json
Vary: Accept

Allow: GET, HEAD, OPTIONS

{

: a7,
"http://localhost:8089/de/shop/?forna

pisoftset=12",

“previous": null,
“results": [
{
"id": 50,

"product_nam
"product_url"

‘Apple iPhone 5",
‘de/shop/smart-phones/apple-iphone-5",

"product_type": "Smart Phone",

"product_model": "smartphonemodel”,

"€ 239,00",

: "<ing class=\"ing-thumbnail\" src=\"/media/filer_public_thumbnails/filer_publ
"description: "no description"

h
{
"id": 51,
"product_name": "Motorola Atrix",
"product_url": "/de/shop/smart-phones/motorola-atrix'
"product_type": "Smart Phone",
"product_model": "smartphonemodel”,
€ 199,00",
"<ing class=\"ing-thumbnail\" src=\"/media/filer_public_thumbnails/filer_publ
"description: "no description"
h
{
"id": 46,
"product_name": "Nexus 4",
"product_url": "/de/shop/snart-phones/nexus-4",
"product_type": "Smart Phone",
"product_model": "smartphonemodel”,
e 399,00",
: i img~thunbnail\" src=\"/media/filer_public_thumbnails/filer_publ
"description: "no description"
h
{

nidv: 47,

_images/fsm-graph.png
no_payment_required

no_payment_required

paid_with_stripe

‘add_stripe_payment

myshop Order

awaiting_payment

awaiting_payment prepayment_partially_deposited cknowledge_paymer|

prepayment_fully_deposited\acknowledge_payment

prepayment_deposited payment_confirmed ’ wcknowledge_payment

facknowledge_payment

pack_goods

t

_static/comment.png

_static/plus.png

_static/product-search-results.png
HOME / Search

64ca.

2]

samisk

3260
e

2 matching products found Base Price

Micro SDHC 64GB €12.89
Buit to stand up to hours of Full HD1 video recording, the

SanDisk High Endurance Video Monitoring microSDHC and

microSDXC Memory Cards provide the capacity,

performance and exceptional reliabilty today’s home

security and dash cams demand. They're also protected

against extreme temperatures, shock, water and x-ays2,

50 you can be confident the evidence is there when you

need it. SanDisk High Endurance Video Monitoring Cards

are avallable in capacities of 32GB and 64GB.

Micro SDHC 32GB €839
Built to stand up to hours of Full HD1 video recording, the

‘SanDisk High Endurance Video Monitoring microSDHC and

microSDXC Memory Cards provide the capacity,

performance and exceptional reliabilty today's home

security and dash cams demand. They're also protected

against extreme temperatures, shock, water and x-rays2,

50 you can be confident the evidence is there when you

need it. SanDisk High Endurance Video Monitoring Cards

are avallable in capacities of 32GB and 64GB.

_static/rest-catalog-list.png
Product List EX El

GET /de/shop/7format=api

HTTP 200 0K
Content-Type: application/json
Vary: Accept

Allow: GET, HEAD, OPTIONS

{

: a7,
"http://localhost:8089/de/shop/?forna

pisoftset=12",

“previous": null,
“results": [
{
"id": 50,

"product_nam
"product_url"

‘Apple iPhone 5",
‘de/shop/smart-phones/apple-iphone-5",

"product_type": "Smart Phone",

"product_model": "smartphonemodel”,

"€ 239,00",

: "<ing class=\"ing-thumbnail\" src=\"/media/filer_public_thumbnails/filer_publ
"description: "no description"

h
{
"id": 51,
"product_name": "Motorola Atrix",
"product_url": "/de/shop/smart-phones/motorola-atrix'
"product_type": "Smart Phone",
"product_model": "smartphonemodel”,
€ 199,00",
"<ing class=\"ing-thumbnail\" src=\"/media/filer_public_thumbnails/filer_publ
"description: "no description"
h
{
"id": 46,
"product_name": "Nexus 4",
"product_url": "/de/shop/snart-phones/nexus-4",
"product_type": "Smart Phone",
"product_model": "smartphonemodel”,
e 399,00",
: i img~thunbnail\" src=\"/media/filer_public_thumbnails/filer_publ
"description: "no description"
h
{

nidv: 47,

_static/up-pressed.png

_static/file.png

_static/minus.png

_static/rest-order-detail.png
Order [oerons J§ cer -]

Base View class to render the fulfilled orders for the current user.

GET /en/info/your-orders/57format=api

HTTP 200 0K
Expires: Sat, 23 Jan 2016 21:49:51 GHT

Vary: Accept

Last-Modified: Sat, 23 Jan 2016 21:49:51 GMT

Allow: GET, HEAD, OPTIONS

Cache-Control: no-cache, no-store, must-revalidate, max-age=0
Content-Type: application/json

{

'2016-00005" ,
de/info/ihre-bestellungen/5",
"Packing goods",

product_name": "Apple iPhone 5",
“product_url": "/en/shop/smart-phones/apple-iphone-5",
“smart Phone",

smartphonemode"

‘media-left\"><a href
gee 'mediath

/en/shop/smart-phones/apple-iphone-5'

“line_total"

8.49",

_static/comment-bright.png

_static/checkout/login-reset.png
Sign In

Your e-mail address

‘ 8 | Email
Password
| & | Passwora

[voon —

_static/checkout/logout.png
Authenticated as: admin

Logout

_static/checkout/login-reset-open.png
Sign In

Your e-mail address

‘ & | Email

Password

& | Password

Your e-mail address

Password Forgotten?

‘ & | Email

Reset Password

_static/checkout/recognized.png
Main Content Container EXPAND ALL +

v Simple Wrapper Naked Wrapper S O+ =
v Segment if customer.is_recognized S O+ =
v Row with 1 column s+ =
v Column default width: 12 units s+
v Process Bar with 3 pages s+
v Process Step s+
v Segment if customer.is_registered S O+ =
Customer Form 4 =
v Segment else S O+ =
Guest Form 4 =
Next Step Button Weiter s
v Process Step s+
Shipping Address Form s
Billing Address Form s =
Next Step Button Weiter s =
v Process Step S+ =
Cart Static Cart 4
Payment Method Form '
Shipping Method Form s
Extra Annotation Form 4 =
Accept Condition Ich habe die s =
Proceed Button Jetzt Kaufen 4 =

» Segment else S O+ =

_static/checkout/reset-password.png
Password Forgotten?

Your e-mail address

‘ & Emal

Reset Password

_static/checkout/visitor.png
Main Content Container EXPAND ALL

v Simple Wrapper Naked Wrapper

» Segment if customer.is_recognized

v Segment else

v Row with 3 columns

v Column default width: 4 units

Authentication Login & Reset Form

v Column default width: 4 units

Authentication Register User

v Column default width: 4 units

Authentication Continue as guest

_static/checkout/register.png
Sign In

Your e-mail address

Register Yourself

Your e-mail address

‘ 8 Emalil ‘ =2
Password) Preset password
‘ & | Password Send a randomly generated password to

Password Forgotten?

your e-mail address.
Choose a password
a

Minimum length is 6 characters.

=]
Prmpe—

Proceed as guest

Continue as guest

_static/checkout/continue-as-guest.png
Proceed as guest

Continue as guest

_static/checkout/register-user.png
Register Yourself

Your e-mail address

=

[Preset password

Send a randomly generated password to your e-
mail address.

Choose a password

a
Minimum length is 6 characters.

a

Confirm password.

_static/checkout/checkout.png
Addressee

John Does

Supplement

Lie Street

P * This field s required. | Location

‘ London

Country

United Kingdom

Use shipping address for billing

Next >

_static/checkout/login.png
Sign In

Your e-mail address

‘ 8 | Email
Password
| & | Passwora

_static/order/detail-view.png
Your order from 06.12.2015

Quantity
1

Product

Nexus 4

Unit price

€399,00

Subtotal

incl. 19% VAT.

Shipping costs

Total

Thereof paid

Total

€399,00

€404.00

_static/order/fsm-graph.png
no_payment_required

no_payment_required

paid_with_stripe

‘add_stripe_payment

myshop Order

awaiting_payment

awaiting_payment prepayment_partially_deposited cknowledge_paymer|

prepayment_fully_deposited\acknowledge_payment

prepayment_deposited payment_confirmed ’ wcknowledge_payment

facknowledge_payment

pack_goods

t

_static/checkout/change-password.png
Change Password

New Password

[a | NewPasswora

Confirm Password

‘ @ | Confirm Password

Submit Changes

_static/checkout/processbar-step3.png
Quantity

o 10

Product Unit Price Total
€239.00 €239.00

Subtotal €239.00

19% VAT incl. €38.16

Shipping costs €5.00

Total €244.00

_static/cart/cart-structure.png
Main Content Container EXPAND ALL. +

¥ Row with 1 column s+ =
¥ Column default width: 12 units S+ =
Cart Editable Cart I'd =
v Row with 2 columns. s+ =
¥ Column widths: 12/3 units s+
Button Continue Shopping s
¥ Column widths: 12/ 4 units s+

Button Proceed to Checkout ' =

_static/order/list-view.png
Your Orders

Order Date Sum Shipping Address Status.

5.Dez. 2015 €404.00 John Does Lie Street 987987 London United Kingdom Paid using Stripe

_static/cart/static-cart.png
Quantity Product Unit Price Total

2 Sony Xperia TL €125.00 €250.00
Product Your greatest moments, from lie to phone to big
Code: screen, in beautifull vivid detail. The Xperia™
1131 TUs HD Reality Display lets you see everything
sharper, faster, better. See your photos like never
before with the “Album” app. Videos and pictures
are crisp in every detal with no jagged edges or
blurry faces. Your memories have never been

more beautiful.
1 SDHC Card 8GB €599 €5.99
product ‘SanDisk SDHC and SDXC memory cards are
Code: great choices to capture and store your favorite
1001 pictures and videos on standard point and shoot

cameras. SanDisk SDHC and SDXC memory
cards are compatible with cameras, laptops,
tablets, and other devices that support the SDHC
‘and SDXG formats, and are capable of recording
hours of HDvideo (720p).

Subtotal €255.99
19% VAT incl. €40.87
Shipping costs €5.00

Total €260.99

A Continue Shopping Proceed to Checkout >

reference/client-framework.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

Client Side Framework

While Django doesn’t impose any client side framework, djangoSHOP has to. Here we have to
consider that it is unrealistic to expect an e-commerce side, without any client-side operations.
For instance, during checkout the customer must be able to edit the cart interactively. We also
might want to offer autocompletion and infinite scroll.

Therefore the author of djangoSHOP has decided to add some reusable Javascript code to this
framework. The most obvious choice would have been jQuery since it is already used by the Django
administration backend. However by using jQuery, web designers adopting the templates for their
djangoSHOP implementation would inevitably have to adopt Javascript code. In order to prevent
this from happening, another popular Javascript framework was chosen: AngularJS [https://www.angularjs.org/].

This means that template designers only have to add special HTML directives as provided by the
framework. They do not have to write or adopt any Javascript code, except for the initialization.

		..note:: Since djangoSHOP uses REST for every part of the communication, the client side

		framework can be replaced by whatever appropriate.

Initialize the Application

As with any application, also the client side must be initialized. This in AngularJS is done
straight forward. Change the outermost HTML element, which typically is the <html> tag, to

<html ng-app="myShop">

somewhere in this file, include the Javascript files required by Angular.

For a better organization of the included files, it is strongly recommended to use django-sekizai [https://django-sekizai.readthedocs.org/en/latest/]
as the assets manager:

{% load static sekizai_tags %}

{% addtoblock "js" %}<script src="{% static 'bower_components/picturefill/dist/picturefill.min.js' %}" type="text/javascript"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script src="{% static 'bower_components/angular/angular.min.js' %}" type="text/javascript"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script src="{% static 'bower_components/angular-sanitize/angular-sanitize.min.js' %}"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script src="{% static 'bower_components/angular-i18n/angular-locale_de.js' %}"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script src="{% static 'bower_components/angular-animate/angular-animate.min.js' %}"></script>{% endaddtoblock %}
{% addtoblock "js" %}<script src="{% static 'bower_components/angular-messages/angular-messages.min.js' %}"></script>{% endaddtoblock %}

Before the closing </body>-tag, we then combine those includes and initialize the client side
application. Say, we declare a base template for our project:

myshop/pages/base.html

{% load djng_tags %}
<body>
...
{% render_block "js" postprocessor "compressor.contrib.sekizai.compress" %}
<script type="text/javascript">
angular.module('myShop', ['ngAnimate', 'ngMessages', 'ngSanitize',
 {% render_block "shop-ng-requires" postprocessor "shop.sekizai_processors.module_list" %}
]).config(['$httpProvider', function($httpProvider) {
 $httpProvider.defaults.headers.common['X-CSRFToken'] = '{% csrf_value %}';
 $httpProvider.defaults.headers.common['X-Requested-With'] = 'XMLHttpRequest';
}]).config(['$locationProvider', function($locationProvider) {
 $locationProvider.html5Mode(false);
}]){% render_block "shop-ng-config" postprocessor "shop.sekizai_processors.module_config" %};
</script>

</body>

By using Sekizai’s templatetag render_block inside the initialization and configuration phase
of our Angular application, we can delegate the dependency resolution to template expansion and
inclusion.

For example, the editable cart requires its own Angular module, found in a separate Javascript file.
Since we honor the principle of encapsulation, we only want to include and initialize that module
if the customer loads the view to alter the cart. Here the template for our editable cart starts
with:

shop/cart/editable.html

{% load static sekizai_tags %}

{% addtoblock "js" %}<script src="{% static 'shop/js/cart.js' %}" type="text/javascript"></script>{% endaddtoblock %}
{% addtoblock "shop-ng-requires" %}django.shop.cart{% endaddtoblock %}

Sekizai then collects the content between these addtoblock``s, and renders them using the
``render_block statements shown above. This concept allows us to delegate dependency resolution
and module initialization to whom it concerns.

Angular Modules

The djangoSHOP framework declares a bunch of Angular directives and controllers, grouped into
separate modules. All these modules are placed into their own JavaScript file and use the same
but unique naming scheme, for example django.shop.auth, django.shop.cart,
django.shop.catalog etc., to avoid conflicts with other third party modules.

This is where Sekizai’s render_block templatetag, together with the postprocessor
module_list we can manage our AngularJS dependencies:

By adding Sekizai’s render_block templatetag, together with the postprocessor module_config,
at the end of our initialization statement, we can add arbitrary configuration code.

Unless additional client functionality is required, these are the only parts where our project
requires us to write JavaScript.

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

_static/cart/cart-display.png
Quantity

Product Unit Price

SDXC Card 64GB €13.99

EXTREME PLUS €8.49
microSDHC 16GB

Ultra SDHC 32GB 40Mb/s €16.99

Subtotal

19% VAT incl.

Shipping costs

Total

A Continue Shopping

Total

€13.99

€8.49

€33.98

€56.46
€9.01

€5.00

€61.46

®
§
s

i
g

®
§
s

i
g

®
g
H

Proceed to Checkout >

various-ideas.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

Various Ideas

This has been startet as an unorderet list of various requirements and
usage scenarios which may have an impact to the core
implementation. There are also some Items, which should not have an
impact on the core implementation.

The goal of this list is to sort out stuff which should be done in
some kind of extension package or app on their own.

This list will have to be sorted in some way to (hopefully) become
useful imput.

Core Stuff

i18n

Most models need to be translatable.

Products

Shops normally sell some kind of product. These products may be very
differnt, so the trick here is to stay very flexible and
extensible.

See products for current discussion details.

Catalog and Categories

Shops are often organized by some kind of Category
implementation. Products may be assosiated to one (or multiple)
categories in which they should be shown.

Should Products know anything about Categories?

Alternatives may be to organize products by tags.

Categories should be implemented as an efficient tree (mptt).

Customers

Is a Customer always a User?

Can Organisations be Customers?

Should Customers be Contacts with a special role?

Cart

Should be rather simple: A list of products.

See also cart

Orders

During the checkout process a Cart is transformed into an Order
(?). In pseudocode this would look like this:

my_order = checkout(my_cart)

(checkout() is the complicated part here)

An Order needs to contain copies of some data in case the referred
items change. Kind of historical data. Cases:

		price changes

		customer address changes

		...

An Order also contains prices. The Cart itself does not need to
contain price information. (?)

Prices

Prices may get rather complicated.

See also prices for some generic notes.

Should have no impact to core

CMS-Integration

Every shop also contains some sort of pages which should be managed by
a CMS.

Important: Integration of navigation.

This should be implemented in its own app.

Image handling

Some models (e.g. Product, Category) may will have images attached to
them.

The handling of images (most often scaling) can be done by template
tags like sorl does. This should have no impact on core models and
left to the shop implementor.

Connectors to other systems

Shops may be seen as a frontent to ERP-Systems and should sometimes be
connected to these systems. It may also be possible that product data
should be taken from external sources and be processed by the shop
system.

These extensions should only use the core models but not influence
them in any kind. Meta-Information which may be required could be
stored well in their own models which contain a relativ to the basic
Product model (or other core models).

When data should be propagated outbound, they can attach
signal-handlers to appropriate signals.

It may be appropriate to add some general patterns / best practices to
the docs.

Whishlists

Although this is a common shop feature, this can be seen as a generic
kind of “bookmark list” which contains a list of django models.

Notifications

Outbound notifications of nearly any kind could be implemented by
using appropriate signals of core models. So this should have not too
much influence to core stuff.

Use Cases:

		New Orders

		Order changes

		Product available in stock again

		...

Maybe some custom signals should provided here.

Comments

They are just available as a very generic app, nothing to be done here. (?)

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

reference/configuration.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

Configuration and Settings

The djangoSHOP framework itself, requires only a few configuration directives. However, since
each e-commerce site built around djangoSHOP consists of the merchant’s own project, plus a
collection of third party Django apps, here is a summary of mandatory and some optional
configuration settings:

DjangoSHOP settings

App Label

This label is required internally to configure the name of the database tables of used in the
merchant’s implementation.

SHOP_APP_LABEL = 'myshop'

Alternative User Model

Django’s built-in User model lacks a few features required by djangoSHOP, mainly the
possibility to use the email address as the login credential. This overridden model is 100% field
compatible to Django’s internal model and even reuses the database table auth_user.

AUTH_USER_MODEL = 'email_auth.User'

Since this user model intentionally does not enforce uniqueness on the email address, Django would
complain if we do not silence this system check:

SILENCED_SYSTEM_CHECKS = ('auth.W004')

For further information, please refer to the Customer Model documentation.

Authentication Backends

AUTHENTICATION_BACKENDS = (
 'django.contrib.auth.backends.ModelBackend',
 'allauth.account.auth_backends.AuthenticationBackend',
)

Currency

Unless Money types are specified explicitly, each project requires a default currency:

SHOP_DEFAULT_CURRENCY = 'EUR'

The typical format to render an amount is $ 1.23, but some merchant may prefer 1.23 USD.
By using the configuration setting:

SHOP_MONEY_FORMAT = '{symbol} {amount}'

we my specify our own money rendering format, where {symbol} is €, $, £, etc. and {currency}
is EUR, USD, GBP, etc.

Cart Modifiers

Each project requires at least one cart modifier in order to initialize the cart. In most
implementations shop.modifiers.defaults.DefaultCartModifier is enough, but depending
on the product models, the merchant’s may implement an alternative.

To identify the taxes in the cart, use one of the provided tax modifiers or implement a customized
one.

Other modifiers may add extra payment and shipping costs, or rebate the total amount depending
on whatever appropriate.

SHOP_CART_MODIFIERS = (
 'shop.modifiers.defaults.DefaultCartModifier',
 'shop.modifiers.taxes.CartExcludedTaxModifier',
 # other modifiers
)

For further information, please refer to the Cart Modifiers documentation.

Installed Django Applications

This is a configuration known to work. Special and optional apps are discussed below.

INSTALLED_APPS = (
 'django.contrib.auth',
 'email_auth',
 'polymorphic',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'djangocms_admin_style',
 'django.contrib.admin',
 'django.contrib.staticfiles',
 'django.contrib.sitemaps',
 'djangocms_text_ckeditor',
 'django_select2',
 'cmsplugin_cascade',
 'cmsplugin_cascade.clipboard',
 'cmsplugin_cascade.sharable',
 'cmsplugin_cascade.extra_fields',
 'cmsplugin_cascade.segmentation',
 'cms_bootstrap3',
 'adminsortable2',
 'rest_framework',
 'rest_framework.authtoken',
 'rest_auth',
 'django_fsm',
 'fsm_admin',
 'djng',
 'cms',
 'menus',
 'treebeard',
 'compressor',
 'sekizai',
 'sass_processor',
 'django_filters',
 'filer',
 'easy_thumbnails',
 'easy_thumbnails.optimize',
 'parler',
 'post_office',
 'haystack',
 'shop',
 'my_shop_implementation',
)

		email_auth optional but recommended, overrides the built-in authentification. It must be
located after django.contrib.auth.

		polymorphic required only, if the site requires more than one type of product model.

		djangocms_text_ckeditor optionally adds a WYSIWYG HTML editor which integrates well with
djangoCMS.

		django_select2 optionally adds a select field to Django’s admin, with integrated
autocompletion. Very useful for added links to products manually.

		cmsplugin_cascade adds the functionality to add CMS plugins, as provided by djangoSHOP,
to arbitrary CMS placeholders.

		cmsplugin_cascade.clipboard allows the site administrator to copy a set of plugins in one
installation and paste it into the placeholder of another one.

		cmsplugin_cascade.sharable allows the site administrator to share a preconfigurable set
of plugin attributes into an alias, to be reused by many plugins of the same type.

		cmsplugin_cascade.extra_fields allows the site administrator to add arbitrary CSS classes,
styles and ID-fields to entitled plugins.

		cmsplugin_cascade.segmentation allows to segment a set of plugins into logical units.

		cms_bootstrap3 adds some templates and templatetags to render Bootstrap 3 styled menus
and navigation bars.

		adminsortable2 allows the site administrator to sort various items in Django’s administration
backend.

		rest_framework, rest_framework.authtoken and rest_auth, required, add the REST
functionality to the djangoSHOP framework.

		django_fsm and fsm_admin, required, add the Finite State Machine to the djangoSHOP
framework.

		djng required for installations using AngularJS. Adds the interface layer between Django and
AngularJS.

		cms, menus and treebeard are required if djangoSHOP is used in combination with
djangoCMS.

		compressor, highly recommended, concatenates and minifies CSS and JavaScript files on
production systems.

		sekizai, highly recommended, allows the template designer to group CSS and JavaScript
includes.

		sass_processor, optional but recommended, used to convert SASS into pure CSS.

		django_filters, optionally used to filter products by their attributes using request
parameters.

		filer, highly recommended, manage your media files in Django.

		easy_thumbnails and easy_thumbnails.optimize, highly recommended, handle thumbnail
generation and optimization.

		parler is an optional framework which handles the translation of models fields into other
natural languages.

		post_office is an asynchronous mail delivery application.

		haystack handles the interface between Django and Elasticsearch – a full-text search engine.

		shop this framework.

		my_shop_implementation replace this by the merchant’s implementation of his shop.

Middleware Classes

This is a configuration known to work. Special middleware classes are discussed below.

MIDDLEWARE_CLASSES = (
 'djng.middleware.AngularUrlMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'shop.middleware.CustomerMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.gzip.GZipMiddleware',
 'cms.middleware.language.LanguageCookieMiddleware',
 'cms.middleware.user.CurrentUserMiddleware',
 'cms.middleware.page.CurrentPageMiddleware',
 'cms.middleware.toolbar.ToolbarMiddleware',
)

* ``djng.middleware.AngularUrlMiddleware`` adds a special router, so that we can use Django's
 ``reverse`` function from inside JavaScript.
* ``shop.middleware.CustomerMiddleware`` add the Customer object to each request.

Static Files

If compressor and/or sass_processor are part of INSTALLED_APPS, add their finders to
the list of the default STATICFILES_FINDERS:

STATICFILES_FINDERS = (
 'django.contrib.staticfiles.finders.FileSystemFinder',
 'django.contrib.staticfiles.finders.AppDirectoriesFinder',
 'sass_processor.finders.CssFinder',
 'compressor.finders.CompressorFinder',
)

Since djangoSHOP requires third party packages outside of PyPI and installed via
bower install and npm install, these files must be made available to Django through the
configuration setting:

STATICFILES_DIRS = (
 os.path.join(BASE_DIR, 'static'),
 ('bower_components', os.path.join(PROJECT_ROOT, 'bower_components')),
 ('node_modules', os.path.join(PROJECT_ROOT, 'node_modules')),
)

Some files installed by npm are processed by django-sass-processor and hence their path
must be made available:

NODE_MODULES_URL = STATIC_URL + 'node_modules/'

SASS_PROCESSOR_INCLUDE_DIRS = (
 os.path.join(PROJECT_ROOT, 'node_modules'),
)

Template Context Processors

Templates rendered by the djangoSHOP framework require the Customer object in their context.
Configure this by adding a special template context processor:

TEMPLATES = [{
 ...
 'OPTIONS': {
 'context_processors': (
 ...
 'shop.context_processors.customer',
 'shop.context_processors.version',
),
 },
}]

Workflow Mixins

SHOP_ORDER_WORKFLOWS = (
 'shop.payment.defaults.PayInAdvanceWorkflowMixin',
 'shop.shipping.defaults.CommissionGoodsWorkflowMixin',
 # other workflow mixins
)

REST Framework

The REST framework requires special settings. We namely must inform it how to serialize our special
Money type:

REST_FRAMEWORK = {
 'DEFAULT_RENDERER_CLASSES': (
 'shop.rest.money.JSONRenderer',
 'rest_framework.renderers.BrowsableAPIRenderer',
),
 'DEFAULT_FILTER_BACKENDS': ('rest_framework.filters.DjangoFilterBackend',),
 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination',
 'PAGE_SIZE': 12,
}

SERIALIZATION_MODULES = {'json': str('shop.money.serializers')}

Django CMS and Cascade settings

DjangoSHOP requires at least one CMS template. Assure that it contains a placeholder able to
accept

CMS_TEMPLATES = (
 ('myshop/pages/default.html', _("Default Page")),
)

CMS_PERMISSION = False

DjangoSHOP requires a few shop specific plugins for djangocms-cascade. Additionally we
gain some functionality to add links from CMS pages to products.

CMSPLUGIN_CASCADE_PLUGINS = ('cmsplugin_cascade.segmentation', 'cmsplugin_cascade.generic',
 'cmsplugin_cascade.link', 'shop.cascade', 'cmsplugin_cascade.bootstrap3',)

CMSPLUGIN_CASCADE = {
 'dependencies': {
 'shop/js/admin/shoplinkplugin.js': 'cascade/js/admin/linkpluginbase.js',
 },
 'alien_plugins': ('TextPlugin', 'TextLinkPlugin',),
 'bootstrap3': {
 'template_basedir': 'angular-ui',
 },
 'plugins_with_extra_fields': (
 'BootstrapButtonPlugin',
 'BootstrapRowPlugin',
 'SimpleWrapperPlugin',
 'HorizontalRulePlugin',
 'ExtraAnnotationFormPlugin',
 'ShopProceedButton',
),
 'segmentation_mixins': (
 ('shop.cascade.segmentation.EmulateCustomerModelMixin', 'shop.cascade.segmentation.EmulateCustomerAdminMixin'),
),
}

CMSPLUGIN_CASCADE_LINKPLUGIN_CLASSES = (
 'shop.cascade.plugin_base.CatalogLinkPluginBase',
 'cmsplugin_cascade.link.plugin_base.LinkElementMixin',
 'shop.cascade.plugin_base.CatalogLinkForm',
)

Full Text Search

Presuming that you installed and run an ElasticSearchEngine server, configure Haystack:

HAYSTACK_CONNECTIONS = {
 'default': {
 'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine',
 'URL': 'http://localhost:9200/',
 'INDEX_NAME': 'my_prefix-en',
 },
}

If you want to index other natural language, say German, add another prefix:

HAYSTACK_CONNECTIONS = {
 ...
 'de': {
 'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine',
 'URL': 'http://localhost:9200/',
 'INDEX_NAME': 'my_prefix-de',
 }
}
HAYSTACK_ROUTERS = ('shop.search.routers.LanguageRouter',)

Various other settings

For usability reasons it makes sense to update the cart’s total upon change only after a certain
time of inactivity. This configuration sets this to 2500 milliseconds:

SHOP_EDITCART_NG_MODEL_OPTIONS = "{updateOn: 'default blur', debounce: {'default': 2500, 'blur': 0}}"

Change the include path to a local directory, if you don’t want to rely on a CDN:

SELECT2_CSS = 'bower_components/select2/dist/css/select2.min.css'
SELECT2_JS = 'bower_components/select2/dist/js/select2.min.js'

Since the client side is not allowed to do any price and quantity computations, Decimal values are
transferred to the client using strings. This also avoids nasty rounding errors.

COERCE_DECIMAL_TO_STRING = True

Prevent to display all transitions configured by the workflow mixins inside the administration
backend:

FSM_ADMIN_FORCE_PERMIT = True

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

reference/cart-icon.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

Controlling the Cart Icon

On e-commerce sites, typically a cart- or basket symbol is located on the top right corner of the
navigation bar and clicking on it, normally loads the cart page.

Together with the cart icon, we often want to display an additional caption, such as the number
of items and/or the cart’s total. The cart item typically is rendered using the templatetag
{% cart_icon %}. It can be styled using the template myshop/templatetags/cart-icon.html,
or if it doesn’t exist, falls back on shop/templatetags/cart-icon.html.

Cart Icon Caption

This is where the client-side cart controller enters the scene. Adding product to –, or editing
the cart changes the number of items and/or the cart’s total. Therefore we must update its caption
whenever we detect a modification in the cart. A typical use pattern, for example is:

 <i class="fa fa-shopping-cart fa-fw fa-lg"></i>
 <shop-carticon-caption caption-data="{num_items: {{ cart.num_items|default:0 }} }"></shop-carticon-caption>

The AngularJS directive <shop-carticon-caption ...> is itself styled using an Angular template
such as:

<script id="shop/carticon-caption.html" type="text/ng-template">
 <ng-pluralize count="caption.num_items" when="{'1': '{% trans "1 Item" context "cart icon" %}', 'other': '{% trans "{} Items" context "cart icon" %}'}"></ng-pluralize>
</script>

Whenever this AngularJS directive receives an event of type shopUpdateCarticonCaption, then it
updates the cart icon’s caption with the current state of the cart. The emitter of such an event
typically is the cart editor or an add-to-cart directive. If this function has already computed
the new caption data, it may send it to the cart item, such as:

$scope.$emit('shopUpdateCarticonCaption', caption_data);

otherwise if it emits the signal without object, the AngularJS directive shopCarticonCaption
will fetch the updated caption data from the server. The latter invokes an additional HTTP request
but is useful, if the caption shall for instance contain the cart’s total, since this has to be
computed on the server anyway.

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

reference/shipping-providers.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

Shipping Providers

Unless you use the merchant management systems for delivery, djangoSHOP provides some hooks to
add shipping providers. Shipping providers require that the Delivery model is available, otherwise
there is no way to keep track which items have been shipped with a delivery.

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

plugins.html

 Navigation

 		
 index

 		
 modules |

 		djangoSHOP 0.9.1 documentation »

 Obsolete documentation

Plugins

Django SHOP defines 4 types of different plugins for the time being:

		Cart modifiers

		Shipping modules

		Payment modules

		Order workflow modules

Shipping backends

Shipping backends differ from price modifiers in that there must be only one
shipping backend selected per order (the shopper must choose which delivery
method to use)

Shipping costs should be calculated on an Order object,
not on a Cart object (Order
instances are fully serialized in the database for archiving purposes).

How they work

Shipping backends need to be registered in the SHOP_SHIPPING_BACKENDS Django
setting. They do not need to extend any particular class, but need to expose
a specific interface, as defined in shipping-backend-interface.

The core functionality the shop exposes is the ability to retrieve the current
Order object (and all it’s related bits and pieces such
as extra price fields, line items etc...) via a convenient
self.shop.get_order() call. This allows for your module to be reused
relatively easily should another shop system implement this interface.

On their part, shipping backends should expose at least a get_urls()
method, returning a urlpattern-style list or urls. This allows backend
writers to have almost full control of the shipping process (they can create
views and make them available to the URL resolver).

Please note that module URLs should be namespaced, and will be added to the
ship/ URL namespace. This is a hard limitation to avoid URL name clashes.

Payment backends

Payment backends must also be selected by the end user (the shopper).
Theses modules take care of the actual payment processing.

How they work

Similar to shipping backends, payment backends do not need to extend any
particular class, but need to expose a specific interface, as defined in
Backend interface.

They also obtain a reference to the shop, with some convenient methods defined
such as self.shop.get_order().

They must also define a get_urls() method, and all defined URLs will be
namespaced to pay/.

 © Copyright 2016 Jacob Rief.
 Created using Sphinx 1.3.5.

_images/rest-add-to-cart.png
Add To Cart EX El

Handle the "Add to Cart" dialog on the products detail page.

POST /de/shop/smartcards/sdxc-card-64gb/add-to-cart

HTTP 202 Accepted
Content-Type: application/json
Vary: Accept

Allows GET, POST, HEAD, OPTIONS

€
uantity"
nit_price '€ 13,99",
ubtotal": "€ 41,07",
product”: 5,
vextra®: {
“product_code": "1004"
b
b
Raw data
Quantity
3

HTML form

_images/recognized.png
Main Content Container EXPAND ALL +

v Simple Wrapper Naked Wrapper S O+ =
v Segment if customer.is_recognized S O+ =
v Row with 1 column s+ =
v Column default width: 12 units s+
v Process Bar with 3 pages s+
v Process Step s+
v Segment if customer.is_registered S O+ =
Customer Form 4 =
v Segment else S O+ =
Guest Form 4 =
Next Step Button Weiter s
v Process Step s+
Shipping Address Form s
Billing Address Form s =
Next Step Button Weiter s =
v Process Step S+ =
Cart Static Cart 4
Payment Method Form '
Shipping Method Form s
Extra Annotation Form 4 =
Accept Condition Ich habe die s =
Proceed Button Jetzt Kaufen 4 =

» Segment else S O+ =

_images/rest-catalog-detail.png
Product Retrieve EX El

View responsible for rendering the products detalls.
Additionally an extra method as shown in products lists, cart lists
and order item lists.

GET /de/shop/smart-phones/apple-iphone-57forma:

HTTP 200 0K
Content-Type: application/json
Vary: Accept

Allow: GET, HEAD, OPTIONS

{

roduct”: {

“product_nane": “Apple iPhone 5"

“created_at”

“updated_at"

“availability": [
[

true,
"9999-12-31723: 59:59. 999"

1

Il

“price": "€ 239,00",

“polynorphic_ctype": 110,

“id": 50,

“cns_pages": [
22,
20

Iy

“inages"
7,
78

1,

“order": 1,

“slug": “apple-iphone-5",
“manufacturer”: 7

_images/detail-view.png
Your order from 06.12.2015

Quantity
1

Product

Nexus 4

Unit price

€399,00

Subtotal

incl. 19% VAT.

Shipping costs

Total

Thereof paid

Total

€399,00

€404.00

_images/logout.png
Authenticated as: admin

Logout

_images/cart-structure.png
Main Content Container EXPAND ALL. +

¥ Row with 1 column s+ =
¥ Column default width: 12 units S+ =
Cart Editable Cart I'd =
v Row with 2 columns. s+ =
¥ Column widths: 12/3 units s+
Button Continue Shopping s
¥ Column widths: 12/ 4 units s+

Button Proceed to Checkout ' =

_images/static-cart.png
Quantity Product Unit Price Total

2 Sony Xperia TL €125.00 €250.00
Product Your greatest moments, from lie to phone to big
Code: screen, in beautifull vivid detail. The Xperia™
1131 TUs HD Reality Display lets you see everything
sharper, faster, better. See your photos like never
before with the “Album” app. Videos and pictures
are crisp in every detal with no jagged edges or
blurry faces. Your memories have never been

more beautiful.
1 SDHC Card 8GB €599 €5.99
product ‘SanDisk SDHC and SDXC memory cards are
Code: great choices to capture and store your favorite
1001 pictures and videos on standard point and shoot

cameras. SanDisk SDHC and SDXC memory
cards are compatible with cameras, laptops,
tablets, and other devices that support the SDHC
‘and SDXG formats, and are capable of recording
hours of HDvideo (720p).

Subtotal €255.99
19% VAT incl. €40.87
Shipping costs €5.00

Total €260.99

A Continue Shopping Proceed to Checkout >

_images/login-reset.png
Sign In

Your e-mail address

‘ 8 | Email
Password
| & | Passwora

[voon —

_images/rest-search-results.png
Search EX El

A generic view to be used for rendering the result list while searching.

GET /en/search/7q=iphonesfornat=api

HTTP 200 0K
Content-Type: application/json
Vary: Accept

Allow: GET, HEAD, OPTIONS

<
“count": 1,
“next”: null,
“previous”: null,
“results”: [
<
“price": "€ 239.00",
“media’: "<div Class=\"nedia-left\"><
“product_url": "/en/shop/snart-phones/apple-iphone-5",
“product_nane": "Apple iPhone 5"
b

_images/login-reset-open.png
Sign In

Your e-mail address

‘ & | Email

Password

& | Password

Your e-mail address

Password Forgotten?

‘ & | Email

Reset Password

_images/visitor.png
Main Content Container EXPAND ALL

v Simple Wrapper Naked Wrapper

» Segment if customer.is_recognized

v Segment else

v Row with 3 columns

v Column default width: 4 units

Authentication Login & Reset Form

v Column default width: 4 units

Authentication Register User

v Column default width: 4 units

Authentication Continue as guest

_images/login.png
Sign In

Your e-mail address

‘ 8 | Email
Password
| & | Passwora

_images/product-search-results.png
HOME / Search

64ca.

2]

samisk

3260
e

2 matching products found Base Price

Micro SDHC 64GB €12.89
Buit to stand up to hours of Full HD1 video recording, the

SanDisk High Endurance Video Monitoring microSDHC and

microSDXC Memory Cards provide the capacity,

performance and exceptional reliabilty today’s home

security and dash cams demand. They're also protected

against extreme temperatures, shock, water and x-ays2,

50 you can be confident the evidence is there when you

need it. SanDisk High Endurance Video Monitoring Cards

are avallable in capacities of 32GB and 64GB.

Micro SDHC 32GB €839
Built to stand up to hours of Full HD1 video recording, the

‘SanDisk High Endurance Video Monitoring microSDHC and

microSDXC Memory Cards provide the capacity,

performance and exceptional reliabilty today's home

security and dash cams demand. They're also protected

against extreme temperatures, shock, water and x-rays2,

50 you can be confident the evidence is there when you

need it. SanDisk High Endurance Video Monitoring Cards

are avallable in capacities of 32GB and 64GB.

_images/cart-display.png
Quantity

Product Unit Price

SDXC Card 64GB €13.99

EXTREME PLUS €8.49
microSDHC 16GB

Ultra SDHC 32GB 40Mb/s €16.99

Subtotal

19% VAT incl.

Shipping costs

Total

A Continue Shopping

Total

€13.99

€8.49

€33.98

€56.46
€9.01

€5.00

€61.46

®
§
s

i
g

®
§
s

i
g

®
g
H

Proceed to Checkout >

_images/change-password.png
Change Password

New Password

[a | NewPasswora

Confirm Password

‘ @ | Confirm Password

Submit Changes

_images/register-user.png
Register Yourself

Your e-mail address

=

[Preset password

Send a randomly generated password to your e-
mail address.

Choose a password

a
Minimum length is 6 characters.

a

Confirm password.

_images/checkout.png
Addressee

John Does

Supplement

Lie Street

P * This field s required. | Location

‘ London

Country

United Kingdom

Use shipping address for billing

Next >

_images/continue-as-guest.png
Proceed as guest

Continue as guest

_images/reset-password.png
Password Forgotten?

Your e-mail address

‘ & Emal

Reset Password

_images/register.png
Sign In

Your e-mail address

Register Yourself

Your e-mail address

‘ 8 Emalil ‘ =2
Password) Preset password
‘ & | Password Send a randomly generated password to

Password Forgotten?

your e-mail address.
Choose a password
a

Minimum length is 6 characters.

=]
Prmpe—

Proceed as guest

Continue as guest

