
djangoSHOP
Release 0.9.1

November 17, 2016





Contents

1 Software Architecture 3

2 Unique Features of djangoSHOP 7

3 Tutorial 9

4 Reference 29

5 How To’s 95

6 Development and Community 99

7 License 109

i



ii



djangoSHOP, Release 0.9.1

This is the documentation starting from version 0.9; if you are looking for the documentation of django-shop version
0.2, please check the sidebar of RTD.

Version 0.9 of djangoSHOP is a complete rewrite of the code base, keeping the concepts of model overriding and cart
modifiers. With some effort it should be possible to migrate existing projects to this new release.

Contents 1



djangoSHOP, Release 0.9.1

2 Contents



CHAPTER 1

Software Architecture

The djangoSHOP framework is, as its name implies, a framework and not a software which runs out of the box.
Instead, an e-commerce site built upon djangoSHOP, always consists of this framework, a bunch of other Django
apps and the merchant’s own implementation. While this may seem more complicate than a ready-to-use solution,
it gives the programmer enormous advantages during the implementation:

Not everything can be “explained” to a software system using user interfaces. When reaching a certain point of com-
plexity, it normally is easier to pour those requirements into code, rather than to expect yet another set of configuration
buttons.

When evaluating djangoSHOP with other e-commerce solutions, I therefore suggest to do the following litmus test:

Consider a product which shall be sold world-wide. Depending on the country’s origin of the request, use the native
language and the local currency. Due to export restrictions, some products can not be sold everywhere. Moreover, in
some countries the value added tax is part of the product’s price, and must be stated separately on the invoice, while
in other countries, products are advertised using net prices, and tax is added later on the invoice.

Instead of looking for software which can handle such a complex requirement, rethink about writing your own plugins,
able to handle this. With the django, REST and djangoSHOP frameworks, this normally is possible in a few dozen
lines of clearly legible Python code. Compare this to solutions, which claim to handle such complex requirements.
They normally are shipped containing huge amounts of features, which very few merchants ever require, but which
bloat the overall system complexity, making such a piece of software expensive to maintain.

1.1 Design Decisions

1.1.1 Single Source of Truth

A fundamental aspect of good software design is to follow the principle of “Don’t repeat yourself”, often denoted as
DRY. In djangoSHOP we aim for a single source of truth, wherever possible.

For instance have a look at the shop.models.address.BaseShippingAddress. Whenever we add, change
or remove a field, the ORM mapper of Django gets notified and with ./manage.py makemigrations followed
by ./manage.py migrate our database scheme is updated. But even the input fields of our address form adopt
to all changes in our address model. Even the client side form field validation adopts to every change in our address
model. As we can see, here our single source of truth is the address model.

1.1.2 Feature Completeness

A merchant who wants to implement a unique feature for his e-commerce site, must never have to touch the code
of the framework. Aiming for ubiquity means, that no matter how challenging a feature is, it must be possible to be

3



djangoSHOP, Release 0.9.1

implemented into the merchant’s own implementation, rather than by patching the framework itself.

Otherwise this framework contains a bug - not just a missing feature! I’m sure some merchants will come up with really
weird ideas, I never have thought of. If the djangoSHOP framework inhibits to add a feature, then feel free to create
a bug report. The claim “feature completeness” for a framework is the analogue to the term “Turing completeness” for
programming languages.

Consider that on many sites, a merchant’s requirement is patched into existing code. This means that every time a
new version of the e-commerce software is released, that patch must be repeatedly adopted. This can become rather
dangerous when security flaws in that software must be closed immediately. DjangoSHOP instead is designed, so
that the merchant’s implementation and third party plugins have to subclass its models and to override its templates
accordingly.

1.1.3 Minimalism

In a nutshell, djangoSHOP offers this set of basic functionalities, to keep the framework simple and stupid (KISS)
without reinventing the wheel:

• A catalog to display product lists and detail views.

• Some methods to add products to the cart.

• A way to remove items from the cart or change their quantities.

• A set of classes to modify the cart’s totals.

• A collection of forms, where customers can add personal, shipping and payment information.

• A way to perform the purchase: this converts the cart into an order.

• A list view where customers can lookup their previously performed orders

• A backend tool which helps to track the state of orders.

All functionality required to build a real e-commerce site, sits on top of this. Computing taxes for instance, can vary a
lot among different legislations and thus is not part of the framework. The same applies for vouchers, rebates, delivery
costs, etc.

These are the parts, which must be fine tuned by the merchant. They can be rather complicate to implement and are
best implemented by separate plugins.

1.1.4 Separation of Concern

Compared to other e-commerce solutions, the djangoSHOP framework has a rather small footprint in terms of code
lines, database tables and classes. This does not mean, that its functionality is somehow limited. Instead, the mer-
chant’s own implementation can become rather large. This is because djangoSHOP implies dependencies to many
third party Django apps.

Having layered systems gives us programmers many advantages:

• We don’t have to reinvent the wheel for every required feature.

• Since those dependencies are used in other applications, they normally are tested quite well.

• No danger to create circular dependencies, as found often in big libraries and stand alone applications.

• Better overview for newcomers, which part of the system is responsible for what.

• Easier to replace one component against another one.

4 Chapter 1. Software Architecture



djangoSHOP, Release 0.9.1

Fortunately Django gives us all the tools to stitch those dependencies together. If for instance we would use one of the
many PHP-based e-commerce system, we’d have to stay inside their modest collection for third party apps, or reinvent
the wheel. This often is a limiting factor compared to the huge ecosystems arround Django.

1.1.5 Inversion of Control

Wherever possible, djangoSHOP tries to delegate the responsibility for taking decision to the merchant’s implemen-
tation of the site. Let explain this by a small example: When the customer adds a product to the cart, djangoSHOP
consults the implementation of the product to determine whether the given item is already part of the cart or not. This
allows the merchant’s implementation to fine tune its product variants.

1.2 Core System

Generally, the shop system can be seen in three different phases:

1.2.1 The shopping phase

From a customers perspective, this is where we look around at different products, presumably in different categories.
We denote this as the catalog list- and catalog detail views. Here we browse, search and filter for products. In one of
the list views, we edit the quantity of the products to be added to our shopping cart.

Each time a product is added, the cart is updated which in turn run the so named “Cart Modifiers”. Cart modifiers sum
up the line totals, add taxes, rebates and shipping costs to compute the final total. The Cart Modifiers are also during
the checkout phase (see below), since the chosen shipping method and destination, as well as the payment method
may modify the final total.

1.2.2 The checkout process

Her the customer must be able to refine the cart’ content: Change the quantity of an item, or remove that item com-
pletely from the cart.

During the checkout process, the customer must enter his addresses and payment informations. These settings may
also influence the cart’s total.

The final step during checkout is the purchase operation. This is where the cart’s content is converted into an order
object and emptied afterwards.

1.2.3 The fulfillment phase

It is now the merchants’s turn to take further steps. Depending on the order status, certain actions must be performed
immediately or the order must be kept in the current state until some external events happen. This could be a payment
receivement, or that an ordered item arrived in stock. While setting up a djangoSHOP project, the allowed status
transitions for the fulfillment phase can be plugged together, giving the merchant the possibility to programmatically
define his order workflows.

1.3 Plugins

Django SHOP defines 5 types of different plugins:

1.2. Core System 5



djangoSHOP, Release 0.9.1

1. Product models

2. Cart modifiers

3. Payment backends

4. Shipping backends

5. Order workflow modules

They may be added as a third party djangoSHOP plugin, or integrated into the merchant’s implementation.

6 Chapter 1. Software Architecture



CHAPTER 2

Unique Features of djangoSHOP

2.1 djangoSHOP requires to describe your products instead of pre-
scribing prefabricated models

Products can vary wildly, and modeling them is not always trivial. Some products are salable in pieces, while others
are continues. Trying to define a set of product models, capable for describing all such scenarios is impossible –
describe your product by customizing the model and not vice versa.

2.1.1 E-commerce solutions, claiming to be plug-and-play, normally use one of
these (anti-)patterns

Either, they offer a field for every possible variation, or they use the Entity-Attribute-Value pattern to add meta-data
for each of your models. This at a first glance seems to be easy. But both approaches are unwieldy and have serious
drawbacks. They both apply a different “physical schema” – the way data is stored, rather than a “logical schema”
– the way users and applications require that data. As soon as you have to combine your e-commerce solution with
some Enterprise-Resource-Planning software, additional back-and-forward conversion routines have to be added.

2.1.2 In djangoSHOP, the physical representation of a product corresponds to its
logical

djangoSHOP‘s approach to this problem is to have minimal set of models. These abstract models are stubs provided
to subclass the physical models. Hence the logical representation of the product conforms to their physical one.
Moreover, it is even possible to represent various types of products by subclassing polymorphically from an abstract
base model. Thanks to the Django framework, modeling the logical representation for a set of products, together with
an administration backend, becomes almost effortless.

2.2 djangoSHOP is multilingual

Products offered in various regions, normally require attributes in different natural languages. For such a set of
products, these attributes can be easily modelled using translatable fields. This lets you seamlessly built a multilingual
e-commerce site.

7



djangoSHOP, Release 0.9.1

2.3 djangoSHOP supports multiple currencies

djangoSHOP is shipped with a set of currency types, bringing their own money arithmetic. This adds an additional
layer of security, because one can not accidentally sum up different currencies. These money types always know how
to represent themselves in different local environments, prefixing their amount with the correct currency symbol. They
also offer the special amount “no price” (represented by -), which behaves like zero but is handy for gratuitous items.

2.4 djangoSHOP directly plugs into djangoCMS

Product detail pages may use all templatetags from djangoCMS, such as the {% placeholder ... %}, the {%
static_placeholder ... %}, or other CMS tags.

djangoSHOP does not presuppose categories to organize product list views. Instead djangoCMS pages can be spe-
cialized to handle product lists via a CMS app. This allows the merchant to organize products into categories, using
the existing page hierarchy from the CMS. It also allows to offer single products from a CMS page, without requiring
any category.

2.5 djangoSHOP is based on REST

• djangoSHOP uses the Django REST framework and hence does not require any Django View

• Every view is based on REST interfaces.

• Infinite scrolling and paginated listings use the same template.

• Views for cart, checkout etc. can be inserted into exiting pages.

• This means that one can navigate through products, add them to the cart, modify the cart, register himself as
new customer (or proceed as guest), add his shipping information, pay via Stripe and view his past orders. Other
Payment Service Providers can be added in a pluggable manner.

Every page in the shop: product-list, product-detail, cart, checkout-page, orders-list, order-detail etc. is part of the
CMS and can be edited through the plugin editor. The communication between the client and these pages is done
exclusively through REST. This has the nice side-effect, that the merchants shop implementation does not require any
Django-View.

djangoSHOP is shipped with individual components for each task. These plugins then can be placed into any CMS
placeholder using the plugin editor. Each of these plugins is shipped with their own overridable template, which can
also be used as a stand-alone template outside of a CMS placeholder. Templates for bigger tasks, such as the Cart-View
are granular, so that the HTML can be overridden partially.

Authentication is done through auth-rest, which allows to authenticate against a bunch of social networks, such as
Google+, Facebook, GitHub, etc in a pluggable manner.

Moreover, the checkout process is based on a configurable finite state machine, which means that a merchant can adopt
the shops workflow to the way he is used to work offline.

Client code is built using Bootstrap-3.3 and AngularJS-1.3. jQuery is required only for the backends administration
interface. All browser components have been implemented as AngularJS directives, so that they can be reused between
projects. For instance, my current merchant implementation does not have a single line of customized JavaScript.

This makes is very easy, even for non-programmers, to implement a shop. A merchant only has to adopt his product
models, optionally the cart and order models, and override the templates.

8 Chapter 2. Unique Features of djangoSHOP



CHAPTER 3

Tutorial

This tutorial shows how to setup a working e-commerce site with djangoSHOP using the given dependencies. The
code required to setup this demo can be found in the example/myshop folder.

3.1 Tutorial

3.1.1 Introduction

This tutorial is aimed at people new to django SHOP but already familiar with Django. If you aren’t yet, reading their
excellent Django Tutorial is highly recommended.

The steps outlined in this tutorial are meant to be followed in order.

3.1.2 Prepare the Installation

To run the examples shown in this tutorial, you must install django-shop from GitHub, since the pip-installable
from PyPI only contains the main files. Before proceeding, please make sure virtualenv is installed on your system,
otherwise you would pollute your Python site-packages folder.

Also ensure that these packages are installed using the favorite package manager of your operating system:

• Python 2.7

• Redis: http://redis.io/

• SQLite: https://www.sqlite.org/

• bower: http://bower.io/

• Node Package Manager: https://www.npmjs.com/

• Python 2.7 (Latest minor version recommended)

• Django 1.9 (Latest minor version recommended)

$ virtualenv shoptutorial
$ source shoptutorial/bin/activate
$ mkdir Tutorial; cd Tutorial
(shoptutorial)$ git clone --depth 1 https://github.com/awesto/django-shop
(shoptutorial)$ cd django-shop
(shoptutorial)$ pip install -e .
(shoptutorial)$ pip install -r requirements/tutorial.txt

9

https://docs.djangoproject.com/en/stable/intro/tutorial01/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://redis.io/
https://www.sqlite.org/
http://bower.io/
https://www.npmjs.com/


djangoSHOP, Release 0.9.1

(shoptutorial)$ npm install
(shoptutorial)$ bower install

these statements will setup an environment, which runs a demo shop out of the box.

You may populate the database with your own products, or if impatient, Quickstart a Running Demo using prepared
CMS page layouts, products and media files.

Create a database for the demo

Finally we must create a database to run our example project:

(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_DEBUG=1
(shoptutorial)$ ./manage.py migrate
(shoptutorial)$ ./manage.py createsuperuser
Email address: admin@example.org
Username: admin
Password:
Password (again):
Superuser created successfully.
(shoptutorial)$ ./manage.py runserver

Finally point a browser onto http://localhost:8000/ and log in as the superuser you just created.

3.1.3 Add some pages to the CMS

In djangoSHOP, every page, with the exception of the product’s detail pages, can be rendered by the CMS. Therefore,
unless you need a special landing page, start immediately with the Catalog List View of your products. Change into
the Django Admin backend, chose the section

Start > django CMS > Pages

and add a Page. As its Title chose “Smart Cards”. Then change into the Advanced Settings at the bottom of the page.
In this editor window, locate the field Application and select Products List. Then save the page and click on View
on site.

Now change into Structure mode and locate the placeholder named Main content container. Add a plugin from
section Bootstrap named Row. Below that Row add a Column with a width of 12 units. Finally, below the last
Column add a plugin from section Shop named Catalog List View.

Now we have a working catalog list view, but since we havn’t added any products to the database yet, we won’t see
any items on our page.

3.2 Quickstart a Running Demo

3.2.1 Using a Docker image

To get a first impression of the djangoSHOP examples, you may use a prepared Docker container. If not already
available on your workstation, first install the Docker runtime environment and start a Docker machine.

Now you may run a fully configured djangoSHOP image on your local machine:

docker run -p 9001:9001 jrief/uwsgi-django-shop:latest

10 Chapter 3. Tutorial

http://localhost:8000/
https://docs.docker.com/windows/


djangoSHOP, Release 0.9.1

This image is rather large (1.7 GB) therefore it may take some time to download.

Locate the IP address of the running container using docker-machine ip default. Then point a browser onto
this address using port 9001, for instance http://192.168.99.100:9001/en/

Please note that before bootstrapping, a full text index is built and the images are thumbnailed. This takes additional
time. Therefore, if you stop the running container, before rerunning the Docker image it is recommended to restart the
container. First locate it using

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
79b7b69a7473 jrief/uwsgi-django-shop:latest "/usr/sbin/uwsgi --in" 11 minutes ago
...
$ docker start 79b7b69a7473

and then restart it. The access the administration backed, sign in as user “admin” with password “secret”.

Note: This demo does not function with the Payment Service Provider Stripe, because each merchant requires its
own credentials. The same applies for sending emails, because the application requires an outgoing SMTP server.

3.2.2 The classic approach

Alternatively you may also download all dependencies and start the project manually. If you want to use the demo as
a starting point, this probably is the better solution.

Filling your CMS with page content and adding products is a boring job. Impatient users may start three demos using
some prepared sample data. First assure that all dependencies are installed into its virtual environment as described in
section “Prepare the Installation”. Then instead of adding pages and products manually, download the media files and
unpack them into the folder django-shop:

(shoptutorial)$ tar zxf DOWNLOAD/FOLDER/django-shop-workdir.tar.gz

Starting from this folder, you can run all three demos: The first, simple demo shows how to setup a monolingual
shop, with one product type. The second, internationalized demo shows how to setup a multilingual shop, with one
product type. For translation of model attributes, this installation uses the django-parler app. The third, polymorphic
demo shows how to setup a shop with many different product types. To handle the polymorphism of products, this
installation uses the django-polymorphic app.

Note: All demos can be started independently from each other, but you are encouraged to start with the “Simple
Product”, and then proceed to the more complicate examples.

3.2.3 Simple Product Demo

Assure you are in the django-shop folder and using the correct virtual environment. Then in a shell invoke:

(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_SHOP_TUTORIAL=simple DJANGO_DEBUG=1
(shoptutorial)$ ./manage.py migrate
(shoptutorial)$ ./manage.py loaddata fixtures/myshop-simple.json
(shoptutorial)$ ./manage.py runserver

Point a browser onto http://localhost:8000/admin/ and sign in as user “admin” with password “secret”.

This runs the demo for Modeling a simple product.

3.2. Quickstart a Running Demo 11

http://192.168.99.100:9001/en/
http://downloads.django-shop.org/django-shop-workdir.tar.gz
http://django-parler.readthedocs.org/en/latest/
https://django-polymorphic.readthedocs.org/en/latest/
http://localhost:8000/admin/


djangoSHOP, Release 0.9.1

3.2.4 Internationalized Products

In this demo the description of the products can be translated into different natural languages.

When migrating from the Simple Products demo, assure you are in the django-shop folder and using the correct
virtual environment. Then in a shell invoke:

(shoptutorial)$ cp workdir/db-simple.sqlite3 workdir/db-i18n.sqlite3
(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_SHOP_TUTORIAL=i18n DJANGO_DEBUG=1
(shoptutorial)$ ./manage.py migrate
(shoptutorial)$ ./manage.py runserver

Alternatively, if you prefer to start with an empty database, assure that the file workdir/db-i18n.sqlite3 is
missing. Then in a shell invoke:

(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_SHOP_TUTORIAL=i18n DJANGO_DEBUG=1
(shoptutorial)$ ./manage.py migrate
(shoptutorial)$ ./manage.py loaddata fixtures/myshop-i18n.json
(shoptutorial)$ ./manage.py runserver

Point a browser onto http://localhost:8000/admin/ and sign in as user “admin” with password “secret”.

This runs a demo for Modeling a Multilingual Product.

3.2.5 Polymorphic Products

In this demo we show how to handle products with different properties and in different natural languages. This example
can’t be migrated from the previous demos, without loosing lots of information. It is likely that you don’t want to add
the Smart Phones manually, it is suggested to start using a fixture.

This example shows how to add Smart Phones in addition to the existing Smart Cards. Assure you are in the
django-shop folder and using the correct virtual environment. Then in a shell invoke:

(shoptutorial)$ rm workdir/db-polymorphic.sqlite3
(shoptutorial)$ cd example
(shoptutorial)$ export DJANGO_SHOP_TUTORIAL=polymorphic
(shoptutorial)$ ./manage.py migrate
(shoptutorial)$ ./manage.py loaddata fixtures/myshop-polymorphic.json
(shoptutorial)$ ./manage.py runserver

Point a browser onto http://localhost:8000/admin/ and sign in as user “admin” with password “secret”.

This runs a demo for Products with Different Properties.

3.3 Modeling a simple product

As a simple example, this tutorial uses Smart Cards as its first product. As emphasized in section tutorial/customer-
model, djangoSHOP is not shipped with ready to use product models. Instead the merchant must declare these models
based on the products properties. Lets have a look ar a model describing a typical Smart Card:

Listing 3.1: myshop/models/simple/smartcard.py

12 Chapter 3. Tutorial

http://localhost:8000/admin/
http://localhost:8000/admin/


djangoSHOP, Release 0.9.1

1 from djangocms_text_ckeditor.fields import HTMLField
2 from shop.money.fields import MoneyField
3 from shop.models.product import BaseProduct, BaseProductManager
4 from shop.models.defaults.mapping import ProductPage, ProductImage
5 @python_2_unicode_compatible
6 class SmartCard(BaseProduct):
7 # common product fields
8 product_name = models.CharField(max_length=255, verbose_name=_("Product Name"))
9 slug = models.SlugField(verbose_name=_("Slug"))

10 unit_price = MoneyField(_("Unit price"), decimal_places=3,
11 help_text=_("Net price for this product"))
12 description = HTMLField(verbose_name=_("Description"),
13 images = models.ManyToManyField('filer.Image', through=ProductImage)
14

Here our model SmartCard inherits directly from BaseProduct, which is a stub class, hence the most common
fields, such as product_name, slug and unit_price must be added to our product here. Later on we will see
why these fields, even though required by each product, can not be part of our abstract model BaseProduct.

Additionally a smart card has some product specific properties:

1 help_text=_("Description for the list view of products."))
2

3 # product properties
4 manufacturer = models.ForeignKey(Manufacturer, verbose_name=_("Manufacturer"))
5 CARD_TYPE = (2 * ('{}{}'.format(s, t),)
6 for t in ('SD', 'SDXC', 'SDHC', 'SDHC II') for s in ('', 'micro '))
7 card_type = models.CharField(_("Card Type"), choices=CARD_TYPE, max_length=15)
8 SPEED = ((str(s), "{} MB/s".format(s)) for s in (4, 20, 30, 40, 48, 80, 95, 280))
9 speed = models.CharField(_("Transfer Speed"), choices=SPEED, max_length=8)

10 product_code = models.CharField(_("Product code"), max_length=255, unique=True)
11 storage = models.PositiveIntegerField(_("Storage Capacity"),
12 help_text=_("Storage capacity in GB"))

these class attributes depend heavily on the data sheet of the product to sell.

Finally we also want to position our products into categories and sort them:

1 help_text=_("Storage capacity in GB"))
2

3 # controlling the catalog
4 order = models.PositiveIntegerField(verbose_name=_("Sort by"), db_index=True)
5 cms_pages = models.ManyToManyField('cms.Page', through=ProductPage,
6 help_text=_("Choose list view this product shall appear on."))
7 images = models.ManyToManyField('filer.Image', through=ProductImage)

The field order is used to keep track on the sequence of our products while rendering a list view.

The field cms_pages specifies on which pages of the CMS a product shall appear.

Note: If categories do not require to keep any technical properties, it often is completely sufficient to use CMS pages
as their surrogates.

Finally images is another many-to-many relation, allowing to associate none, one or more images to a product.

Both fields cms_pages and images must use the through parameter. This is because we have two many-to-
many mapping tables which are part of the merchant’s project rather than the djangoSHOP application. The
first of those mapping tables has foreign keys onto the models cms.Page and myshop.SmartCard. The sec-
ond table has foreign keys onto the models filer.Image and myshop.SmartCard again. Since the model

3.3. Modeling a simple product 13

https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.ManyToManyField.through


djangoSHOP, Release 0.9.1

myshop.SmartCard has been declared by the merchant himself, he also is responsible for managing those many-
to-many mapping tables.

Additionally each product model requires these attributes:

• A model field or property method named product_name: It must returns the product’s name in its natural
language.

• A method get_price(request): Returns the product price. This can depend on the given region, which is
available through the request object.

• A method get_absolute_url(): Returns the canonical URL of a product.

• The object attribute must be of type BaseProductManager or derived from thereof.

These product model attributes are optional, but highly recommended:

• A model field or property method named product_code: It shall returns a language independent product
code or article number.

• A property method sample_image: It shall returns a sample image for the given product.

3.3.1 Add Model myshop.SmartCard to Django Admin

For reasons just explained, it is the responsibility of the project to manage the many-to-many relations between its
CMS pages and the images on one side, and the product on the other side. Therefore we can’t use the built-in admin
widget FilteredSelectMultiple for these relations.

Instead djangoSHOP is shipped with a special mixin class CMSPageAsCategoryMixin, which handles the rela-
tion between CMS pages and the product. This however implies that the field used to specify this relation is named
cms_pages.

1 from adminsortable2.admin import SortableAdminMixin
2 from shop.admin.product import CMSPageAsCategoryMixin, ProductImageInline
3 from myshop.models import SmartCard
4

5

6 @admin.register(SmartCard)
7 class SmartCardAdmin(SortableAdminMixin, CMSPageAsCategoryMixin, admin.ModelAdmin):
8 fieldsets = (
9 (None, {

10 'fields': ('product_name', 'slug', 'product_code', 'unit_price', 'active', 'description',),
11 }),
12 (_("Properties"), {
13 'fields': ('manufacturer', 'storage', 'card_type', 'speed',)
14 }),
15 )
16 inlines = (ProductImageInline,)
17 prepopulated_fields = {'slug': ('product_name',)}
18 list_display = ('product_name', 'product_code', 'unit_price', 'active',)
19 search_fields = ('product_name',)

For images, the admin class must use a special inline class named ProductImageInline. This is because the
merchant might want to arrange the order of the images and therefore a simple SelectMultiple widget won’t do
this job here.

Extend our simple product to support other natural languages by Modeling a Multilingual Product.

14 Chapter 3. Tutorial



djangoSHOP, Release 0.9.1

3.4 Modeling a Multilingual Product

Let’s extend our previous SmartCard model to internationalize our shop site. Normally the name of a Smart Card
model is international anyway, say “Ultra Plus micro SDXC”, so it probably won’t make much sense to use a trans-
latable field here. The model attribute which certainly makes sense to be translated into different languages, is the
description field.

3.4.1 Run the Multilingual Demo

To test this example, set the shell environment variable export DJANGO_SHOP_TUTORIAL=i18n, then apply
the modified models to the database schema:

./manage.py migrate myshop

Alternatively recreate the database as explained in Create a database for the demo.

Afterwards start the demo server:

./manage.py runserver

3.4.2 The Multilingal Product Model

DjangoSHOP uses the library django-parler for model translations. We therefore shall rewrite our model as:

Listing 3.2: myshop/models/i18n/smartcard.py

1 from djangocms_text_ckeditor.fields import HTMLField
2 from parler.managers import TranslatableManager, TranslatableQuerySet
3 from parler.models import TranslatableModel, TranslatedFieldsModel
4 from parler.fields import TranslatedField
5 from polymorphic.query import PolymorphicQuerySet
6 from shop.money.fields import MoneyField
7 from shop.models.product import BaseProductManager, BaseProduct
8 from shop.models.defaults.mapping import ProductPage, ProductImage
9 from myshop.models.properties import Manufacturer

10

11 class ProductQuerySet(TranslatableQuerySet, PolymorphicQuerySet):
12 pass
13

14 class ProductManager(BaseProductManager, TranslatableManager):
15 queryset_class = ProductQuerySet
16 @python_2_unicode_compatible
17 class SmartCard(BaseProduct, TranslatableModel):
18 product_name = models.CharField(max_length=255, verbose_name=_("Product Name"))
19 slug = models.SlugField(verbose_name=_("Slug"))
20 unit_price = MoneyField(_("Unit price"), decimal_places=3,
21 help_text=_("Net price for this product"))
22 images = models.ManyToManyField('filer.Image', through=ProductImage)
23

24

25

26 class SmartCardTranslation(TranslatedFieldsModel):
27 master = models.ForeignKey(SmartCard, related_name='translations',
28 null=True)
29 description = HTMLField(verbose_name=_("Description"),

3.4. Modeling a Multilingual Product 15

https://github.com/edoburu/django-parler


djangoSHOP, Release 0.9.1

30 help_text=_("Description for the list view of products."))
31

32 class Meta:
33 unique_together = [('language_code', 'master')]

In comparison to the simple Smart Card model, the field description can now accept text in different languages.

In order to work properly, a model with translations requires an additional model manager and a table storing the
translated fields. Accessing an instance of this model behaves exactly the same as an untranslated model. Therefore it
can be used as a drop-in replacement for our simple SmartCard model.

3.4.3 Translatable model in Django Admin

The admin requires only a small change. Its class must additionally inherit from TranslatableAdmin. This adds
a tab for each configured language to the top of the detail editor. Therefore it is recommended to group all multilingual
fields into one fieldset to emphasize that these fields are translatable.

Listing 3.3: myshop/admin/i18n/smartcard.py

1 from django.contrib import admin
2 from django.utils.translation import ugettext_lazy as _
3 from adminsortable2.admin import SortableAdminMixin
4 from parler.admin import TranslatableAdmin
5 from shop.admin.product import CMSPageAsCategoryMixin, ProductImageInline
6 from myshop.models import SmartCard
7

8 @admin.register(SmartCard)
9 class SmartCardAdmin(SortableAdminMixin, TranslatableAdmin,

10 CMSPageAsCategoryMixin, admin.ModelAdmin):
11 fieldsets = (
12 (None, {
13 'fields': ('product_name', 'slug', 'product_code', 'unit_price', 'active',),
14 }),
15 (_("Translatable Fields"), {
16 'fields': ('description',)
17 }),
18 (_("Properties"), {
19 'fields': ('manufacturer', 'storage', 'card_type',)
20 }),
21 )
22 inlines = (ProductImageInline,)
23 prepopulated_fields = {'slug': ('product_name',)}
24 list_display = ('product_name', 'product_code', 'unit_price', 'active',)
25 search_fields = ('product_name',)

Extend our discrete product type, to polymorphic models which are able to support many different product types:
Products with Different Properties.

3.5 Products with Different Properties

In the previous examples we have seen that we can model our products according to their physical properties, but what
if we want to sell another type of a product with different properties. This is where polymorphism enters the scene.

16 Chapter 3. Tutorial

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)


djangoSHOP, Release 0.9.1

3.5.1 Run the Polymorphic Demo

To test this example, set the shell environment variable export DJANGO_SHOP_TUTORIAL=polymorphic,
then recreate the database as explained in Create a database for the demo and start the demo server:

./manage.py runserver

3.5.2 The Polymorphic Product Model

If in addition to Smart Cards we also want to sell Smart Phones, we must declare a new model. Here instead of
duplicating all the common fields, we unify them into a common base class named Product. Then that base class
shall be extended to become either our known model SmartCard or a new model SmartPhone.

To enable polymorphic models in djangoSHOP, we require the application django-polymorphic. Here our models for
Smart Cards or Smart Phones will be split up into a generic part and a specialized part. The generic part goes into our
new Product model, whereas the specialized parts remain in their models.

You should already start to think about the layout of the list views. Only attributes in model Productwill be available
for list views displaying Smart Phones side by side with Smart Cards. First we must create a special Model Manager
which unifies the query methods for translatable and polymorphic models:

Listing 3.4: myshop/models/i18n/polymorphic/product.py

1 from djangocms_text_ckeditor.fields import HTMLField
2 from parler.models import TranslatableModel, TranslatedFieldsModel
3 from parler.fields import TranslatedField
4 from parler.managers import TranslatableManager, TranslatableQuerySet
5 from polymorphic.query import PolymorphicQuerySet
6 from shop.models.product import BaseProductManager, BaseProduct
7 from shop.models.defaults.mapping import ProductPage, ProductImage
8 from myshop.models.properties import Manufacturer
9

10 class ProductQuerySet(TranslatableQuerySet, PolymorphicQuerySet):
11 pass
12

13 class ProductManager(BaseProductManager, TranslatableManager):
14 queryset_class = ProductQuerySet
15 @python_2_unicode_compatible
16 class Product(BaseProduct, TranslatableModel):
17 product_name = models.CharField(max_length=255, verbose_name=_("Product Name"))
18 slug = models.SlugField(verbose_name=_("Slug"), unique=True)
19 description = TranslatedField()
20

The next step is to identify which model attributes qualify for being part of our Product model. Unfortunately, there
is no silver bullet for this problem and that’s one of the reason why djangoSHOP is shipped without any prepared
model for it. If we want to sell both Smart Cards and Smart Phones, then this Product model may do its jobs:

Listing 3.5: myshop/models/i18n/polymorphic/product.py

1

2 # common product properties
3 manufacturer = models.ForeignKey(Manufacturer, verbose_name=_("Manufacturer"))
4

5 # controlling the catalog
6 order = models.PositiveIntegerField(verbose_name=_("Sort by"), db_index=True)
7 cms_pages = models.ManyToManyField('cms.Page', through=ProductPage,

3.5. Products with Different Properties 17

https://django-polymorphic.readthedocs.org/en/latest/
https://docs.djangoproject.com/en/stable/topics/db/managers/


djangoSHOP, Release 0.9.1

8 help_text=_("Choose list view this product shall appear on."))
9 images = models.ManyToManyField('filer.Image', through=ProductImage)

Model for Smart Card

The model used to store translated fields is the same as in our last example. The new model for Smart Cards now
inherits from Product:

Listing 3.6: myshop/models/i18n/polymorphic/smartcard.py

1 from django.db import models
2 from django.utils.translation import ugettext_lazy as _
3 from shop.money.fields import MoneyField
4 from .product import Product
5

6 class SmartCard(Product):
7 # common product fields
8 unit_price = MoneyField(_("Unit price"), decimal_places=3,
9 help_text=_("Net price for this product"))

10

11 # product properties
12 CARD_TYPE = (2 * ('{}{}'.format(s, t),)
13 for t in ('SD', 'SDXC', 'SDHC', 'SDHC II') for s in ('', 'micro '))
14 card_type = models.CharField(_("Card Type"), choices=CARD_TYPE, max_length=15)
15 SPEED = ((str(s), "{} MB/s".format(s)) for s in (4, 20, 30, 40, 48, 80, 95, 280))
16 speed = models.CharField(_("Transfer Speed"), choices=SPEED, max_length=8)
17 product_code = models.CharField(_("Product code"), max_length=255, unique=True)
18 storage = models.PositiveIntegerField(_("Storage Capacity"),
19 help_text=_("Storage capacity in GB"))
20

Model for Smart Phone

The product model for Smart Phones is intentionally a little bit more complicated. Not only does it have a few
more attributes, but Smart Phones can be sold with different specifications of internal storage. The latter influences
the price and the product code. This is also the reason why we didn’t move the model fields unit_price and
products_code into our base class Product, although every product in our shop requires them.

When presenting Smart Phones in our list views, we want to focus on different models, but not on each flavor, ie. its
internal storage. Therefore customers will have to differentiate between the concrete Smart Phone variations, whenever
they add them to their cart, but not when viewing them in the catalog list. For a customer, it would be very boring to
scroll through lists with many similar products, which only differentiate by a few variations.

This means that for some Smart Phone models, there is be more than one Add to cart button.

When modeling, we therefore require two different classes, one for the Smart Phone model and one for each Smart
Phone variation.

Listing 3.7: myshop/models/polymorphic/smartphone.py

1 from shop.money import Money, MoneyMaker
2 from shop.money.fields import MoneyField
3 from .product import Product
4

5 class SmartPhoneModel(Product):

18 Chapter 3. Tutorial



djangoSHOP, Release 0.9.1

6 """
7 A generic smart phone model, which must be concretized by a model `SmartPhone` - see below.
8 """
9 BATTERY_TYPES = (

10 (1, "Lithium Polymer (Li-Poly)"),
11 (2, "Lithium Ion (Li-Ion)"),
12 )
13 WIFI_CONNECTIVITY = (
14 (1, "802.11 b/g/n"),
15 )
16 BLUETOOTH_CONNECTIVITY = (
17 (1, "Bluetooth 4.0"),
18 )
19 battery_type = models.PositiveSmallIntegerField(_("Battery type"),
20 choices=BATTERY_TYPES)
21 battery_capacity = models.PositiveIntegerField(_("Capacity"),
22 help_text=_("Battery capacity in mAh"))
23 ram_storage = models.PositiveIntegerField(_("RAM"),
24 help_text=_("RAM storage in MB"))
25 wifi_connectivity = models.PositiveIntegerField(_("WiFi"),
26 choices=WIFI_CONNECTIVITY, help_text=_("WiFi Connectivity"))
27 bluetooth = models.PositiveIntegerField(_("Bluetooth"),
28 choices=BLUETOOTH_CONNECTIVITY,
29 help_text=_("Bluetooth Connectivity"))

Here the method get_price() can only return the minimum, average or maximum price for our product. In this
situation, most merchants extol the prices as: Price starting at C 99.50.

The concrete Smart Phone then is modeled as:

1 class SmartPhone(models.Model):
2 product = models.ForeignKey(SmartPhoneModel,
3 verbose_name=_("Smart-Phone Model"))
4 product_code = models.CharField(_("Product code"),
5 max_length=255, unique=True)
6 unit_price = MoneyField(_("Unit price"), decimal_places=3,
7 help_text=_("Net price for this product"))
8 storage = models.PositiveIntegerField(_("Internal Storage"),
9 help_text=_("Internal storage in MB"))

10

To proceed with purchasing, customers need some Cart and Checkout pages.

Model for a generic Commodity

For demo purposes, this polymorphic example adds another kind of Product model, a generic Commodity. Here
instead of adding every possible attribute of our product to the model, we try to remain as generic as possible, and
instead use a PlaceholderField as provided by djangoCMS.

This allows us to add any arbitrary information to our product’s detail page. The only requirement for this to work is,
that the rendering template adds a templatetag to render this placeholder.

Since the djangoSHOP framework looks in the folder catalog for a template named after its product class, adding
this HTML snippet should do the job:

This detail template extends the default template of our site. Apart from the product’s name (which has added as a
convenience), this view remains empty when first viewed. In Edit mode, double clicking on the heading containing
the product name, opens the detail editor for our commodity.

3.5. Products with Different Properties 19



djangoSHOP, Release 0.9.1

After switching into Structure mode, a placeholder named Commodity Details appears. Here we can add as
many Cascade plugins as we want, by subdividing our placeholder into rows, columns, images, text blocks, etc. It
allows us to edit the detail view of our commodity in whatever layout we like. The drawback using this approach
is, that it can lead to inconsistent design and is much more labor intensive, than just editing the product’s attributes
together with their appropriate templates.

Configure the Placeholder

Since we use this placeholder inside a hard-coded Bootstrap column, we must provide a hint to Cascade about the
widths of that column. This has to be done in the settings of the project:

This placeholder configuration emulates the Bootstrap column as declared by <div class="col-xs-12">.

3.6 Catalog Views

Now that we know how to create product models and how to administer them, lets have a look on how to route them
to our views.

When editing the CMS page used for the products list view, open Advanced Settings and chose Products List from
the select box labeled Application.

Then chose a template with at least one placeholder. Click onto View on site to change into front-end editing mode.
Locate the main placeholder and add a Row followed by a Column plugin from the section Bootstrap. Below that
column add a Catalog List Views plugin from section Shop. Then publish the page, it should not display any products
yet.

3.6.1 Add products to the category

Open the detail view of a product in Django’s administration backend. Locate the many-to-many select box labeled
Categories > Cms pages. Select the pages where each product shall appear on.

On reloading the list view, the assigned products now shall be visible. Assure that they have been set to be active,
otherwise they won’t show up.

If you nest categories, products assigned to children will be also be visible on their parents pages.

Product Model Serializers

We already learned how to write model classes and model managers, so what are serializers for?

In djangoSHOP the response views do not distinguish whether the product’s information shall be rendered as HTML
or transferred via JSON. This gives us the ability to use the same business logic for web browsers rendering static
HTML, single page web applications communicating via AJAX or native shopping applications for your mobile de-
vices. This btw. is one of the great benefits when working with RESTful API’s and thanks to the djangorestframework
we don’t even have to write any Django Views anymore.

For instance, try to open the list- or the detail view of any of the products available in the shop. Then in the browsers
URL input field append ?format=api or ?format=json to the URL. This will render the pure product informa-
tion, but without embedding it into HTML.

The REST API view is very handy while developing. If you want to hide this on your production sys-
tem , then in your settingy.py remove ’rest_framework.renderers.BrowsableAPIRenderer’ from
REST_FRAMEWORK[’DEFAULT_RENDERER_CLASSES’].

20 Chapter 3. Tutorial

http://django-cms.readthedocs.org/en/latest/introduction/templates_placeholders.html#placeholders
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.django-rest-framework.org/


djangoSHOP, Release 0.9.1

In the shop’s catalog, we need some functionality to render a list view for all products and we need a detail view to
render each product type. The djangoSHOP framework supplies two such serializers:

3.6.2 Serialize for the Products List View

For each product we want to display in a list view, we need a serializer which converts the content of the most important
fields of a product. Normally these are the Id, the name and price, the URL onto the detail view, a short description
and a sample image.

The djangoSHOP framework does not know which of those fields have to be serialized, therefore it requires some
help from the programmer:

Listing 3.8: myshop/product_serializers.py

1 from shop.rest.serializers import ProductSummarySerializerBase
2 from myshop.models.polymorphic.product import Product
3

4 class ProductSummarySerializer(ProductSummarySerializerBase):
5 class Meta:
6 model = Product
7 fields = ('id', 'product_name', 'product_url',
8 'product_type', 'product_model', 'price')

All these fields can be extracted directly from the product model with the exception of the sample image. This is
because we yet do not know the final dimensions of the image inside its HTML element such as <img src="...">,
and we certainly want to resize it using PIL/Pillow before it is delivered. An easy way to solve this problem is to use
the SerializerMethodField. Simply extend the above class to:

1 from rest_framework.serializers import SerializerMethodField
2

3 class ProductSummarySerializer(ProductSummarySerializerBase):
4 media = SerializerMethodField()
5

6 def get_media(self, product):
7 return self.render_html(product, 'media')

As you might expect, render_html assigns a HTML snippet to the field media in the serialized representation of
our product. This method uses a template to render the HTML. The name of this template is constructed using the
following rules:

• Look for a folder named according to the project’s name, ie. settings.SHOP_APP_LABEL in lower case.
If no such folder can be found, then use the folder named shop.

• Search for a subfolder named products.

• Search for a template named “label-product_type-postfix.html”. These three subfieds are determined using the
following rule: * label: the component of the shop, for instance catalog, cart, order. * product_type: the
class name in lower case of the product’s Django model, for instance smartcard, smartphone or if no such
template can be found, just product. * postfix: This is an arbitrary name passed in by the rendering function.
As in the example above, this is the string media.

Note: It might seem “un-restful” to render HTML snippets by a REST serializer and deliver them via JSON to
the client. However, we somehow must re-size the images assigned to our product to fit into the layout of our list
view. The easiest way to do this in a configurable manner is to use the easythumbnails library and its templatetag {%
thumbnail product.sample_image ... %}.

3.6. Catalog Views 21

http://easy-thumbnails.readthedocs.org/


djangoSHOP, Release 0.9.1

The template to render the media snippet could look like:

Listing 3.9: myshop/products/catalog-smartcard-media.html

{% load i18n thumbnail djng_tags %}
{% thumbnail product.sample_image 100x100 crop as thumb %}
<img src="{{ thumb.url }}" width="{{ thumb.width }}" height="{{ thumb.height }}">

The template of the products list view then may contain a list iteration such as:

{% for product in data.results %}
<div class="shop-list-item">
<a href="{{ product.product_url }}">

<h4>{{ product.product_name }}</h4>
{{ product.media }}
<strong>{% trans "Price" %}: {{ product.price }}</strong>

</a>
</div>

{% endfor %}

The tag {{ product.media }} inserts the HTML snippet as prepared by the serializer from above. A serializer
may add more than one SerializerMethodField. This can be useful, if the list view shall render different
product types using different snippet templates.

3.6.3 Serialize for the Product’s Detail View

The serializer for the Product’s Detail View is very similar to its List View serializer. In the example as shown below,
we even reverse the field listing by explicitly excluding the fields we’re not interested in, rather than naming the fields
we want to include. This for the product’s detail view makes sense, since we want to expose every possible detail.

1 from shop.rest.serializers import ProductDetailSerializerBase
2

3 class ProductDetailSerializer(ProductDetailSerializerBase):
4 class Meta:
5 model = Product
6 exclude = ('active',)

3.6.4 The AddToCartSerializer

Rather than using the detail serializer, the business logic for adding a product to the cart has been moved into a
specialized serializer. This is because djangoSHOP can not presuppose that products are added to the cart only from
within the detail view[#add2cart]_. We also need a way to add more than one product variant to the cart from each
products detail page.

For this purpose djangoSHOP is shipped with an AddToCartSerializer. It can be overridden for special prod-
uct requirements, but for a standard application it just should work out of the box.

Assure that the context for rendering a product contains the key product referring to the product object. The
ProductDetailSerializer does this by default. Then add

{% include "shop/catalog/product-add2cart.html" %}

to an appropriate location in the template which renders the product detail view.

The now included add-to-cart template contains a form with some input fields and a few AngularJS directives, which
communicate with the endpoint connected to the AddToCartSerializer. It updates the subtotal whenever the

22 Chapter 3. Tutorial



djangoSHOP, Release 0.9.1

customer changes the quantity and displays a nice popup window, whenever an item is added to the cart. Of course,
that template can be extended with arbitrary HTML.

These Angular JS directives require some JavaScript code which is located in the file shop/js/catalog.js; it is
referenced automatically when using the above template include statement.

Connect the Serializers with the View classes

Now that we declared the serializers for the product’s list- and detail view, the final step is to access them through
a CMS page. Remember, since we’ve chosen to use CMS pages as categories, we had to set a special djangoCMS
apphook:

Listing 3.10: myshop/cms_app.py

1 from cms.app_base import CMSApp
2 from cms.apphook_pool import apphook_pool
3

4 class ProductsListApp(CMSApp):
5 name = _("Products List")
6 urls = ['myshop.urls.products']
7

8 apphook_pool.register(ProductsListApp)

This apphook points onto a list of boilerplate code containing these urlpattern:

Listing 3.11: myshop/urls/products.py

1 from django.conf.urls import patterns, url
2 from rest_framework.settings import api_settings
3 from shop.rest.filters import CMSPagesFilterBackend
4 from shop.rest.serializers import AddToCartSerializer
5 from shop.views.catalog import (CMSPageProductListView,
6 ProductRetrieveView, AddToCartView)
7

8 urlpatterns = patterns('',
9 url(r'^$', CMSPageProductListView.as_view(

10 serializer_class=ProductSummarySerializer,
11 )),
12 url(r'^(?P<slug>[\w-]+)$', ProductRetrieveView.as_view(
13 serializer_class=ProductDetailSerializer
14 )),
15 url(r'^(?P<slug>[\w-]+)/add-to-cart', AddToCartView.as_view()),
16 )

These URL patterns connect the product serializers with the catalog views in order to assign them an endpoint. Addi-
tional note: The filter class CMSPagesFilterBackend is used to restrict products to specific CMS pages, hence it
can be regarded as the product categoriser.

3.7 Cart and Checkout

In djangoSHOP, the cart and checkout view follow the same idea as all other pages – they are managed by the CMS.
Change into the Django admin backend and look for the CMS page tree. A good position for adding a page is the root
level, but then assure that in Advanced Setting the checkbox Soft root is set.

3.7. Cart and Checkout 23

http://docs.django-cms.org/en/latest/how_to/apphooks.html


djangoSHOP, Release 0.9.1

The checkout my or be combined with the cart on the same page, or moved on a separate page. Its best position
normally is just below the Cart page.

The Checkout pages presumably are the most complicated page to setup. Therefore no generic receipt can be presented
here. Instead some CMS plugins will be listed here. They can be useful to compose a complete checkout page. In
the reference section it is shown in detail how to create a Cart and Checkout view, but for this tutorial the best way to
proceed is to have a look in the prepared demo project for the Cart and Checkout pages.

A list of plugins specific to djangoSHOP can be found in the reference section. They include a cart editor, a static
cart renderer, forms to enter the customers names, addresses, payment- and shipping methods, credit card numbers
and some more.

Other useful plugins can be found in the Django application djangocms-cascade.

3.7.1 Scaffolding

Depending on who is allowed to buy products, keep in mind that pure visiting customers must declare themselves,
whether they want to buy as guests or as registered users. This means that we first must distinguish between pure
visitors and recognized customers. The simplest way to do this is to use the Segmentation if- and else-plugins. A
recognized customer shall be able to proceed directly to the purchasing page. A visiting customer first must declare
himself, this could be handled with a collections of plugins, such as:

24 Chapter 3. Tutorial

http://djangocms-cascade.readthedocs.org/en/latest/


djangoSHOP, Release 0.9.1

in structure mode. This collection of plugins then will be rendered as:

Please note that the Authentication plugins Login & Reset, Register User and Continue as guest must reload the
current page. This is because during these steps a new session-id is assigned, which is requires a full page reload.

After reloading the page, the customer is considered as “recognized”. Since there are a few forms to be filled, this
example uses a Process Bar plugin, which emulates a few sub-pages, which then can be filled out by the customer
step-by-step.

3.7. Cart and Checkout 25



djangoSHOP, Release 0.9.1

A fragment of this collection of plugins then will be rendered as:

26 Chapter 3. Tutorial



djangoSHOP, Release 0.9.1

3.7. Cart and Checkout 27



djangoSHOP, Release 0.9.1

28 Chapter 3. Tutorial



CHAPTER 4

Reference

Reference to classes and concepts used in djangoSHOP

4.1 Customer Model

Most web applications distinguish logged in users explicitly from the anonymous site visitor, which is regarded as a
non-existing user, and thus does not reference a session- or database entity. The Django framework, in this respect, is
no exception.

This pattern is fine for web-sites, which run a Content Management System or a Blog, where only an elected group of
staff users shall be permitted to access. This approach also works for web-services, such as social networks or Intranet
applications, where visitors have to authenticate right from the beginning.

But when running an e-commerce site, this use-pattern has serious drawbacks. Normally, a visitor starts to look for
interesting products, hopefully adding a few of them to their cart. Then on the way to the checkout, they decide
whether to create a user account, use an existing one or continue as guest. Here’s where things get complicated.

First of all, for non-authenticated site visitors, the cart does not belong to anybody. But each cart must be associated
with its site visitor, hence the generic anonymous user object is not appropriate for this purpose. Unfortunately the
Django framework does not offer an explicit but anonymous user object based on its session-Id.

Secondly, at the latest when the cart is converted into an order, but the visitor wants to continue as guest (thus remaining
anonymous), that order object must refer to a User object in the database. These kind of users would be regarded as
fakes, unable to log in, reset their password, etc. The only information which must be stored for such a faked User, is
their email address otherwise they couldn’t be informed, whenever the state of their order changes.

Django does not explicitly allow such User objects in its database models. But by using the boolean flag is_active,
we can fool an application to interpret such guest visitors as a faked anonymous users.

However, since such an approach is unportable across all Django based applications, djangoSHOP introduces a new
database model – the Customer model, which extends the existing User model.

4.1.1 Properties of the Customer Model

The Customer model has a 1:1 relation to the existing User model, which means that for each customer, there
always exists one and only one user object. This approach allows us to do a few things:

The built-in User model can be swapped out and replaced against another implementation. Such an alternative imple-
mentation has a small limitation. It must inherit from django.contrib.auth.models.AbstractBaseUser
and from django.contrib.auth.models.PermissionMixin. It also must define all the fields which are
available in the default model as found in django.contrib.auth.models.User.

29



djangoSHOP, Release 0.9.1

By setting the flag is_active = False, we can create guests inside Django’s User model. Guests can not sign,
they can not reset their password, and can thus be considered as “materialized” anonymous users.

Having guests with an entry in the database, gives us another advantage: By using the session key of the site visitor as
the User object’s username, it is possible to establish a link between a User object in the database with an otherwise
anonymous visitor. This further allows the Cart and the Order models always refer to the User model, since they don’t
have to care about whether a certain User authenticated himself or not. It also keeps the workflow simple, whenever
an anonymous User decides to register and authenticate himself in the future.

4.1.2 Adding the Customer model to our application

As almost all models in djangoSHOP, the Customer model uses itself the Deferred Model Pattern. This means that
the Django project is responsible for materializing that model and additionally allows the merchant to add arbitrary
fields to this Customer model. Good choices are a phone number, a boolean to signal whether the customer shall
receive newsletters, his rebate status, etc.

The simplest way is to materialize the given convenience class in our project’s models.py:

from shop.models.defaults.customer import Customer

or, if we need extra fields, then instead of the above, we write:

from shop.models.customer import BaseCustomer

class (BaseCustomer):
birth_date = models.DateField("Date of Birth")
# other customer related fields

Configure the Middleware

A Customer object is created automatically with each visitor accessing the site. Whenever Django’s internal Authen-
ticationMiddleware adds an AnonymousUser to the request object, djangoSHOP’s CustomerMiddleware adds a
VisitingCustomer to the request object as well. Neither the AnonymousUser nor the VisitingCustomer
are stored inside the database.

Whenever the AuthenticationMiddleware adds an instantiated User to the request object, djangoSHOP’s Customer-
Middleware adds an instantiated Customer to the request object as well. If no associated Customer exists yet, the
CustomerMiddleware creates one.

Therefore add the CustomerMiddleware after the AuthenticationMiddleware in the project’s settings.py:

MIDDLEWARE_CLASSES = (
...
'django.contrib.auth.middleware.AuthenticationMiddleware',
'shop.middleware.CustomerMiddleware',
...

)

Configure the Context Processors

Additionally, some templates may need to access the customer object through the RequestContext. Therefore,
add this context processor to the settings.py of the project.

TEMPLATE_CONTEXT_PROCESSORS = (
...
'shop.context_processors.customer',

30 Chapter 4. Reference

https://docs.djangoproject.com/en/stable/ref/middleware/#django.contrib.auth.middleware.AuthenticationMiddleware
https://docs.djangoproject.com/en/stable/ref/middleware/#django.contrib.auth.middleware.AuthenticationMiddleware


djangoSHOP, Release 0.9.1

...
)

Implementation Details

The Customer model has a non-nullable one-to-one relation to the User model. Hence each Customer is
associated with exactly one User. For instance, accessing the hashed password can be achieved through
customer.user.password. Some common fields and methods from the User model, such as first_name,
last_name, email, is_anonymous() and is_authenticated() are accessible directly, when working
with a Customer object. Saving an instance of type Customer also invokes the save() method from the associated
User model.

The other direction – accessing the Customer model from a User – does not always work. Accessing an attribute that
way fails if the corresponding Customer object is missing, ie. if there is no reverse relation from a Customer pointing
onto the given User object.

>>> from django.contrib.auth import get_user_model
>>> user = get_user_model().create(username='bobo')
>>> print user.customer.salutation
Traceback (most recent call last):

File "<console>", line 1, in <module>
File "django/db/models/fields/related.py", line 206, in __get__
self.related.get_accessor_name()))

DoesNotExist: User has no customer.

This can happen for User objects added manually or by other applications.

During database queries, djangoSHOP always performs and INNER JOIN between the Customer and the User table.
Therefore it performs better to query the User via the Customer object, rather than vice versa.

Anonymous Users and Visiting Customers

Most requests to our site will be of anonymous nature. They will not send a cookie containing a session-Id to the client,
and the server will not allocate a session bucket. The middleware adds a VisitingCustomer object associated
with an AnonymousUser object to the request. These two objects are not stored inside the database.

Whenever such an anonymous user/visiting customer adds the first item to the cart, djangoSHOP instantiates a User
object in the database and associates it with a Customer object. Such a Customer is considered as “unregistered” and
invoking customer.is_authenticated() will return False; its associated User model is inactive and has an
unusable password.

Guests and Registered Customers

On the way to the checkout, a customer must declare himself, whether to continue as guest, to sign in using an existing
account or to register himself with a new account. In the former case (customer wishes to proceed as guest), the User
object remains as it is: Inactive and with an unusable password. In the second case, the visitor signs in using Django’s
default authentication backends. Here the cart’s content is merged with the already existing cart of that user object. In
the latter case (customer registers himself), the user object is recycled and becomes an active Django User object, with
a password and an email address.

Obviate Criticism

Some may argue that adding unregistered and guest customers to the User table is an anti-pattern or hack. So, what
are the alternatives?

4.1. Customer Model 31



djangoSHOP, Release 0.9.1

We could keep the cart of anonymous customers in the session store. This was the procedure used until djangoSHOP
version 0.2. It however required to keep two different models of the cart, one session based and one relational. Not
very practical, specially if the cart model should be overridable by the merchant’s own implementation.

We could associate each cart models with a session id. This would require an additional field which would be NULL
for authenticated customers. While possible in theory, it would require a lot of code which distinguishes between
anonymous and authenticated customers. Since the aim of this software is to remain simple, this idea was dismissed.

We could keep the primary key of each cart in the session associated with the customer. But this would it make very
hard to find expired carts, because we would have to iterate over all carts and for each cart we would have to iterate
over all sessions to check if the primary keys matches. Remember, there is no such thing as an OUTER JOIN between
sessions and database tables.

We could create a customer object which is independent of the user. Hence instead of having a
OneToOneField(AUTH_USER_MODEL) in model Customer, we’d have this 1:1 relation with a nullable for-
eign key. This would require an additional field to store the session id in the customer model. It also would require
an additional email field, if we wanted a guest customers to remain anonymous users – what they actually are, since
they can’t sign in. Apart from field duplication, this approach would also require some code to distinguish between
unrecognized, guest and registered customers. In addition to that, the administration backend would require two
distinguished views, one for the customer model and one for the user model.

4.1.3 Authenticating against the Email Address

Nowadays it is quite common, to use the email address for authenticating, rather than an explicit account identifier.
This in Django is not possible without replacing the built-in User model. Since for an e-commerce site this authenti-
cation variant is rather important, djangoSHOP is shipped with an optional drop-in replacement for the built-in User
model.

This convenience User model is almost a copy of the existing User model as found in
django.contrib.auth.models.py, but it uses the field email rather than username for looking up
the credentials. To activate this alternative User model, add to the project’s settings.py:

INSTALLED_APPS = (
'django.contrib.auth',
'email_auth',
...

)

AUTH_USER_MODEL = 'email_auth.User'

Note: This alternative User model uses the same database table as the Django authentication would, namely
auth_user. It is even field-compatible with the built-in model and hence can be added later to an existing Django
project.

Caveat when using this alternative User model

The savvy reader may have noticed that in email_auth.models.User, the email field is not declared as unique.
This by the way causes Django to complain during startup with:

WARNINGS:
email_auth.User: (auth.W004) 'User.email' is named as the 'USERNAME_FIELD', but it is not unique.

HINT: Ensure that your authentication backend(s) can handle non-unique usernames.

32 Chapter 4. Reference



djangoSHOP, Release 0.9.1

This warning can be silenced by adding SILENCED_SYSTEM_CHECKS = [’auth.W004’] to the project’s
settings.py.

The reason for this is twofold:

First, Django’s default user model has no unique constraint on the email field, so email_auth remains more com-
patible.

Second, the uniqueness is only required for users which actually can sign in. Guest users on the other hand can not
sign in, but they may return someday. By having a unique email field, the Django application email_auth would
lock them out and guests would be allowed to buy only once, but not a second time – something we certainly do not
want!

Therefore djangoSHOP offers two configurable options:

• Customers can declare herself as guests, each time they buy something. This is the default, but causes to have
non-unique email addresses in the database.

• Customer can declare themselves as guests the first time they buys something. If someday they buy again, they
will be recognized as returning customer and must use a form to reset their password. This configuration can
be activated with SHOP_GUEST_IS_ACTIVE_USER = True in the project’s settings.py. This allows
us, to set a unique constraint on the email field.

Note: The email field from Django’s built-in User model has a max-length of 75 characters. This is enough for
most use-cases but violates RFC-5321, which requires 254 characters. The alternative implementation uses the correct
max-length.

Administration of Users and Customers

By keeping the Customer and the User model tight together, it is possible to reuse the Django’s administration backend
for both of them. All we have to do is to import and register the Customer backend inside the project’s admin.py:

from django.contrib import admin
from shop.admin.customer import CustomerProxy, CustomerAdmin

admin.site.register(CustomerProxy, CustomerAdmin)

This administration backend recycles the built-in django.contrib.auth.admin.UserAdmin, and enriches it
by adding the Customer model as a StackedInlineAdmin on top of the detail page. By doing so, we can edit the
Customer and User fields on the same page.

4.1.4 Summary for Customer to User mapping

This table summarizes to possible mappings between a Django User Model 1 and the Shop’s Customer model:

1 or any alternative User model, as set by AUTH_USER_MODEL.

4.1. Customer Model 33

http://tools.ietf.org/html/rfc5321#section-4.5.3


djangoSHOP, Release 0.9.1

Shop’s Customer
Model

Django’s User Model Active Session

VisitingCustomer
object

AnonymousUser object No

Unrecognized
Customer

Inactive User object with unusable password Yes, but not logged in

Customer
recognized as guest
2

Inactive User with valid email address but unusable
password

Yes, but not logged in

Customer
recognized as guest
3

Active User with valid email address and unknown, but
resetable password

Yes, but not logged in

Registered
Customer

Active User with valid email address, known password,
optional salutation, first- and last names

Yes, logged in using Django’s
authentication backend

Manage Customers

djangoSHOP is shipped with a special management command which informs the merchant about the state of cus-
tomers. In the project’s folder, invoke on the command line:

./manage.py shop_customers
Customers in this shop: total=20482, anonymous=17418, expired=10111, active=1068, guests=1997, registered=1067, staff=5.

Read these numbers as: * Anonymous customers are those which added at least one item to the cart, but never
proceeded to checkout. * Expired customers are the subset of the anonymous customers, whose session already
expired. * The difference between guest and registered customers is explained in the above table.

Delete expired customers

By invoking on the command line:

./manage.py shop_customers --delete-expired

This removes all anonymous/unregistered customers and their associated user entities from the database, whose session
expired. This command may be used to reduce the database storage requirements.

4.2 Deferred Model Pattern

Until djangoSHOP version 0.2, there were abstract and concrete and models: BaseProduct and Product,
BaseCart and Cart, BaseCartItem and CartItem, BaseOrder and Order and finally, BaseOrderItem
and OrderItem.

The concrete models were stored in shop.models, whereas abstract models were stored in
shop.models_bases. This was quite confusing and made it difficult to find the right model definition
whenever one had to access the definition of one of the models. Additionally, if someone wanted to subclass a model,
he had to use a configuration directive, say PRODUCT_MODEL, ORDER_MODEL, ORDER_MODEL_ITEM from the
projects settings.py.

This made configuration quite complicate and causes other drawbacks:

2if setting SHOP_GUEST_IS_ACTIVE_USER = False (the default).
3if setting SHOP_GUEST_IS_ACTIVE_USER = True.

34 Chapter 4. Reference



djangoSHOP, Release 0.9.1

• Unless all models have been overridden, the native ones appeared in the administration backend below the cate-
gory Shop, while the customized ones appeared under the given project’s name. To merchants, this inconsistency
in the backend was quite difficult to explain.

• In the past, mixing subclassed with native models caused many issues with circular dependencies.

Therefore in djangoSHOP, since version 0.9 all concrete models, Product, Order, OrderItem, Cart,
CartItem have been removed. These model definitions now all are abstract and named BaseProduct,
BaseOrder, BaseOrderItem, etc. They all have been moved into the folder shop/models/, because that’s the
location a programmer expects them.

4.2.1 Materializing Models

Materializing such an abstract base model, means to create a concrete model with an associated database table. This
model creation is performed in the concrete project implementing the shop; it must be done for each base model in the
shop software.

For instance, materialize the cart by using this code snippet inside our own shop’s models/shopmodels.py files:

from shop.models import cart

class Cart(cart.BaseCart):
my_extra_field = ...

class Meta:
app_label = 'my_shop'

class CartItem(cart.BaseCartItem):
other_field = ...

class Meta:
app_label = 'my_shop'

Of course, we can add as many extra model fields to this concrete cart model, as we wish. All shop models, now
are managed through our project instance. This means that the models Cart, Order, etc. are now managed by the
common database migrations tools, such as ./manage.py makemigration my_shop and ./manage.py
migrate my_shop. This also means that these models, in the Django admin backend, are visible under my_shop.

Use the default Models

Often we don’t need extra fields, hence the abstract shop base model is enough. Then, materializing the models can
be done using some convenience classes as found in shop/models/defaults. We can simply import them into
models.py or models/__init__.py in our own shop project:

from shop.models.defaults.cart import Cart # nopyflakes
from shop.models.defaults.cart_item import CartItem # nopyflakes

Note: The comment nopyflakes has been added to suppress warnings, since these classes arern’t used anywhere
in models.py.

All the configuration settings from djangoSHOP <0.9: PRODUCT_MODEL, ORDER_MODEL,
ORDER_MODEL_ITEM, etc. are not required anymore and can safely be removed from our settings.py.

4.2. Deferred Model Pattern 35



djangoSHOP, Release 0.9.1

4.2.2 Accessing the deferred models

Since models in djangoSHOP are yet unknown during instantiation, one has to access their materialized instance
using the lazy object pattern. For instance in order to access the Cart, use:

from shop.models.cart import CartModel

def my_view(request):
cart = CartModel.objects.get_from_request(request)
cart.items.all() # contains the queryset for all items in the cart

Here CartModel is a lazy object resolved during runtime and pointing on the materialized, or, to say it in other
words, real Cart model.

4.2.3 Technical Internals

Mapping of Foreign Keys

One might argue, that this can’t work, since foreign keys must refer to a real model, not to abstract ones! Therefore
one can not add a field ForeignKey, OneToOneField or ManyToManyField which refers an abstract model
in the djangoSHOP project. But relations are fundamental for a properly working software. Imagine a CartItem
without a foreign relation to Cart.

Fortunately there is a neat trick to solve this problem. By deferring the mapping onto a real model, instead of using
a real ForeignKey, one can use a special “lazy” field, declaring a relation with an abstract model. Now, whenever
the models are “materialized”, then these abstract relations are converted into real foreign keys. The only drawback
for this solution is, that one may derive from an abstract model only once, but for djangoSHOP that’s a non-issue and
doesn’t differ from the current situation, where one can subclass BaseCart only once anyway.

Therefore, when using this deferred model pattern, instead of using models.ForeignKey,
models.OneToOneField or models.ManyToManyField, use the special fields deferred.ForeignKey,
deferred.OneToOneField and deferred.ManyToManyField. When Django materializes the model,
these deferred fields are resolved into real foreign keys.

Accessing the materialized model

While programming with abstract model classes, sometimes they must access their model manager or their concrete
model definition. A query such as BaseCartItem.objects.filter(cart=cart) therefore can not func-
tion and will throw an exception. To facilitate this, the deferred model’s metaclasses adds an additional member
_materialized_model to their base class, while building the model class. This model class then can be accessed
through lazy evaluation, using CartModel, CartItemModel, OrderModel, OrderItemModel, etc.

4.3 Money Types

Until djangoSHOP version 0.2, amounts relating to money were kept inside a Decimal type and stored in the
database model using a DecimalField. In shop installations with only one available currency, this wasn’t a major
issue, because the currency symbol could be hard-coded anywhere on the site.

However, for sites offering pricing information in more than one currency, this caused major problems. When we
needed to perform calculations with amounts that have an associated currency, it is very common to make mistakes by
mixing different currencies. It also is common to perform incorrect conversions that generate wrong results. Python
doesn’t allow developers to associate a specific decimal value with a unit.

Starting with version 0.3.0, djangoSHOP now is shipped with a special factory class:

36 Chapter 4. Reference



djangoSHOP, Release 0.9.1

4.3.1 MoneyMaker

This class can not be instantiated, but is a factory for building a money type with an associated currency. Internally
it uses the well established Decimal type to keep track of the amount. Additionally, it restricts operations on the
current Money type. For instance, we can’t sum up Dollars with Euros. We also can’t multiply two currencies with
each other.

Not a Number

In special occurrences we’d rather want to specify “no amount” rather than an amount of 0.00 (zero). This can be
useful for free samples, or when an item is currently not available. The Decimal type denotes a kind of special value a
NaN – for “Not a Number”. Our Money type also knows about this special value, and when rendered, C - is printed
out.

Declaring a Money object without a value, say m = Money() creates such a special value. The big difference as
for the Decimal type is that when adding or subtracting a NaN to a valid value, it is considered zero, rather than
changing the result of this operation to NaN.

It also allows us to multiply a Money amount with None. The result of this operation is NaN.

Create a Money type

>>> from shop.money_maker import MoneyMaker
>>> Money = MoneyMaker()
>>> print Money('1.99')
C 1.99

>>> print Money('1.55') + Money('8')
C 9.55

>>> print Money
<class 'shop.money.money_maker.MoneyInEUR'>

>>> Yen = MoneyMaker('JPY')
>>> print Yen('1234.5678')
¥ 1235

>>> print Money('100') + Yen('1000')
ValueError: Can not add/substract money in different currencies.

How does this work?

By calling MoneyMaker() a type accepting amounts in the default currency is created. The default currency can
be changed in settings.py with SHOP_DEFAULT_CURRENCY = ’USD’, using one of the official ISO-4217
currency codes.

Alternatively, we can create our own Money type, for instance Yen.

Formating Money

When the amount of a money type is printed or forced to text using str(price), it is prefixed by the currency
symbol. This is fine, when working with only a few currencies. However, some symbols are ambiguous, for instance
Canadian, Australian and US Dollars, which all use the “$” symbol.

With the setting SHOP_MONEY_FORMAT we can style how money is going to be printed out. This setting defaults to
{symbol} {amount}. The following format strings are allowed:

4.3. Money Types 37



djangoSHOP, Release 0.9.1

• {symbol}: The short symbol for a currency, for instance $, £, C, ¥, etc.

• {code}: The international currency code, for instance USD, GBP, EUR, JPY, etc.

• {currency}: The spoken currency description, for instance “US Dollar”, “Pound Sterling”, etc.

• {amount}: The amount, unlocalized.

Thus, if we prefer to print 9.98 US Dollar, then we should set {amount} {currency} as the formatting
string.

4.3.2 Localizing Money

Since the Money class doesn’t know anything about our current locale setting, amounts always are printed unlocalized.
To localize a Money type, use django.utils.numberformat.format(someamount). This function will
return the amount, localized according to the current HTTP request.

4.3.3 Money Database Fields

Money can be stored in the database, keeping the currency information together with the field type. Internally, the
database uses the Decimal type, but such a field knows its currency and will return an amount as MoneyIn... type.
This prevents implicit, but accidental currency conversions.

In our database model, declare a field as:

class Product(models.Model):
...
unit_price = MoneyField(currency='GBP')

This field stores its amounts as British Pounds and returns them typed as MoneyInGBP. If the currency argument
is omitted, then the default currency is used.

4.3.4 Money Representation in JSON

An additional REST SerializerField has been added to convert amounts into JSON strings. When writing REST
serializers, use:

from rest_framework import serializers
from shop.money.rest import MoneyField

class SomeSerializer(serializers.ModelSerializer):
price = MoneyField()

The default REST behavior serializes Decimal types as floats. This is fine if we want to do some computations in the
browser using JavaScript. However, then the currency information is lost and must be re-added somehow to the output
strings. It also is a bad idea to do commercial calculations using floats, yet JavaScript does not offer any Decimal-like
type. I therefore recommend to always do the commerce calculations on the server and transfer amount information
using JSON strings.

4.4 Product Models

Products can vary wildly, and modeling them is not always trivial. Some products are salable in pieces, while others
are continues. Trying to define a set of product models, capable for describing all such scenarios is impossible –

38 Chapter 4. Reference



djangoSHOP, Release 0.9.1

4.4.1 Describe Products by customizing the Model

DjangoSHOP requires to describe products instead of prescribing prefabricated models.

All in all, we know best how our products should be modelled!

E-commerce solutions, claiming to be plug-and-play, usually use one of these (anti-)patterns

Either, they offer a field for every possible variation, or they use the Entity Attribute Value (EAV) pattern to add meta-
data for each of our models. This at a first glance seems to be easy. But both approaches are unwieldy and have serious
drawbacks. They both apply a different “physical schema” – the way data is stored, rather than a “logical schema” –
the way users and applications require that data. As soon as we have to combine our e-commerce solution with some
Enterprise Resource Planning (ERP) software, additional back-and-forward conversion routines have to be added.

In djangoSHOP, the physical representation of a product always maps to its logical

djangoSHOP‘s approach to this problem is to have a minimal set of models. These abstract models are stubs providing
to subclass the physical models. Hence the logical representation of the product conforms to their physical one.
Moreover, it is even possible to represent various types of products by subclassing polymorphically from an abstract
base model. Thanks to Django’s Object Relational Mapper, modeling the logical representation for a set of products,
together with an administration backend, becomes almost effortless.

Therefore the base class to model a product is a stub which contains only these three fields:

The timestamps for created_at and updated_at; these are self-explanatory.

A boolean field active, used to signalize the products availability.

The attentive reader may wonder, why there not even fields for the most basic requirements of each sellable article,
there is no product name, no price field and no product code.

The reason for this is, that djangoSHOP does not impose any fields, which might require a different implementation
for the merchants use case. However, for a sellable commodity some information is fundamental and required. But its
up to him how to implement these fields:

The product’s name must be implemented as a model field or as a property method, but both must be declared as
product_name. Use a method implementation for composed and translatable names, otherwise use a database
model field with that name.

The product’s price must be implemented as a method declared as get_price(request) which accepts the re-
quest object. This gives the merchant the ability to vary the price and/or its currency depending on the geographic
location, the customers login status, the browsers user-agent, or whatever else.

An optional, but highly recommended field is the products item number, declared as product_code. It shall return
a unique and language independent identifier for each product, to be identifiable. In most cases the product code is
implemented by the product model itself, but in some circumstances it may be implemented by the product’s variant.
The SmartPhone from the demo code is one such example.

The example section of djangoSHOP contains a few models which can be copied and adopted to the specific needs
of the merchants products. Let’s have a look at a few use-cases:

4.4.2 Case study: Smart-Phones

There are many smart-phone models with different equipment. All the features are the same, except for the built-in
storage. How shall we describe such a model?

4.4. Product Models 39

https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model


djangoSHOP, Release 0.9.1

In that model, the product’s name shall not be translatable, not even on a multi-lingual site, since smart-phones have
international names used everywhere. Smart-phones models have dimensions, an operating system, a display type and
other features.

But smart-phone have different equipment, namely the built-in storage, and depending on that, they have different
prices and a unique product code. Therefore our product models consists of two classes, the generic smart phone
model and the concrete flavor of that model.

Therefore we would model our smart-phones using a database model similar to the following one:

from shop.models.product import BaseProductManager, BaseProduct
from shop.money import Money

class SmartPhoneModel(BaseProduct):
product_name = models.CharField(max_length=255,

verbose_name=_("Product Name"))
slug = models.SlugField(verbose_name=_("Slug"))
description = HTMLField(help_text=_("Detailed description."))
manufacturer = models.ForeignKey(Manufacturer,

verbose_name=_("Manufacturer"))
screen_size = models.DecimalField(_("Screen size"),

max_digits=4, decimal_places=2)
# other fields to map the specification sheet

objects = BaseProductManager()
lookup_fields = ('product_name__icontains',)

def get_price(request):
aggregate = self.smartphone_set.aggregate(models.Min('unit_price'))
return Money(aggregate['unit_price__min'])

class SmartPhone(models.Model):
product_model = models.ForeignKey(SmartPhoneModel)
product_code = models.CharField(_("Product code"),

max_length=255, unique=True)
unit_price = MoneyField(_("Unit price"))
storage = models.PositiveIntegerField(_("Internal Storage"))

Lets go into the details of these classes. The model fields are self-explanatory. Something to note here is, that each
product requires a field product_name. This alternatively can also be implemented as property.

Another mandatory attribute for each product is the ProductManager class. It must inheriting from
BaseProductManager, and adds some methods to generate some special querysets.

Finally, the attribute lookup_fields contains a list or tuple of lookup fields. These are required by the administra-
tion backend, and used when the site editor has to search for certain products. Since the framework does not impose
which fields are used to distinguish between products, we must give some hints.

Each product also requires a method implemented as get_price(request). This must return the unit price using
one of the available Money Types.

Add multilingual support

Adding multilingual support to an existing product is quite easy and straight forward. To achieve this djangoSHOP
uses the app django-parler which provides Django model translations without nasty hacks. All we have to do, is to
replace the ProductManager with one capable of handling translations:

class ProductQuerySet(TranslatableQuerySet, PolymorphicQuerySet):
pass

40 Chapter 4. Reference

https://docs.djangoproject.com/en/stable/topics/db/queries/#complex-lookups-with-q-objects
http://django-parler.readthedocs.org/


djangoSHOP, Release 0.9.1

class ProductManager(BaseProductManager, TranslatableManager):
queryset_class = ProductQuerySet

The next step is to locate the model fields, which shall be available in different languages. In our use-case thats only
the product’s description:

class SmartPhoneModel(BaseProduct, TranslatableModel):
# other field remain unchanged
description = TranslatedField()

class ProductTranslation(TranslatedFieldsModel):
master = models.ForeignKey(SmartPhoneModel, related_name='translations', null=True)
description = HTMLField(help_text=_("Some more detailed description."))

class Meta:
unique_together = [('language_code', 'master')]

This simple change now allows us to offer the shop’s assortment in different natural languages.

Add Polymorphic Support

If besides smart phones we also want to sell cables, pipes or smart cards, we must split our product models into
a common- and a specialized part. That said, we must separate the information every product requires from the
information specific to a certain product type. Say, in addition to smart phones, we also want to sell smart cards. First
we declare a generic Product model, which is a common base class of both, SmartPhone and SmartCard:

class Product(BaseProduct, TranslatableModel):
product_name = models.CharField(max_length=255, verbose_name=_("Product Name"))
slug = models.SlugField(verbose_name=_("Slug"), unique=True)
description = TranslatedField()

objects = ProductManager()
lookup_fields = ('product_name__icontains',)

Next we only add the product specific attributes to the class models derived from Product:

class SmartPhoneModel(Product):
manufacturer = models.ForeignKey(Manufacturer, verbose_name=_("Manufacturer"))
screen_size = models.DecimalField(_("Screen size"), max_digits=4, decimal_places=2)
battery_type = models.PositiveSmallIntegerField(_("Battery type"), choices=BATTERY_TYPES)
battery_capacity = models.PositiveIntegerField(help_text=_("Battery capacity in mAh"))
ram_storage = models.PositiveIntegerField(help_text=_("RAM storage in MB"))
# and many more attributes as found on the data sheet

class SmartPhone(models.Model):
product_model = models.ForeignKey(SmartPhoneModel)
product_code = models.CharField(_("Product code"), max_length=255, unique=True)
unit_price = MoneyField(_("Unit price"))
storage = models.PositiveIntegerField(_("Internal Storage"))

class SmartCard(Product):
product_code = models.CharField(_("Product code"), max_length=255, unique=True)
storage = models.PositiveIntegerField(help_text=_("Storage capacity in GB"))
unit_price = MoneyField(_("Unit price"))
CARD_TYPE = (2 * ('{}{}'.format(s, t),) for t in ('SD', 'SDXC', 'SDHC', 'SDHC II') for s in ('', 'micro '))
card_type = models.CharField(_("Card Type"), choices=CARD_TYPE, max_length=15)

4.4. Product Models 41



djangoSHOP, Release 0.9.1

SPEED = ((str(s), "{} MB/s".format(s)) for s in (4, 20, 30, 40, 48, 80, 95, 280))
speed = models.CharField(_("Transfer Speed"), choices=SPEED, max_length=8)

If MyShop would sell the iPhone5 with 16GB and 32GB storage as independent products, then we could unify the
classes SmartPhoneModel and SmartPhone and move the attributes product_code and unit_price into
the class Product. This would simplify some programming aspects, but would require the merchant to add a lot of
information twice. Therefore we remain with the model layout presented here.

4.4.3 Caveat using a ManyToManyField with existing models

Sometimes we may need to use a ManyToManyField for models which are handled by other apps in our project.
This for example could be an attribute files referring the model filer.FilerFileField from the library
django-filer. Here Django would try to create a mapping table, where the foreign key to our product model can not be
resolved properly, because while bootstrapping the application, our Product model is still considered to be deferred.

Therefore, we have to create our own mapping model and refer to it using the through parameter, as shown in this
example:

from six import with_metaclass
from django.db import models
from filer.fields.file import FilerFileField
from shop.models import deferred
from shop.models.product import BaseProductManager, BaseProduct

class ProductFile(with_metaclass(deferred.ForeignKeyBuilder, models.Model)):
file = FilerFileField()
product = deferred.ForeignKey(BaseProduct)

class Product(BaseProduct):
# other fields
files = models.ManyToManyField('filer.File', through=ProductFile)

objects = ProductManager()

Note: Do not use this example for creating a many-to-many field to FilerImageField. Instead use
shop.models.related.BaseProductImage which is a base class for this kind of mapping. Just import
and materialize it, in your own project.

4.5 Catalog

The catalog probably is that part, where customers of our e-commerce site spend the most time. Often it even makes
sense, to start the Catalog List View on the main landing page.

In this documentation we presume that categories of products are built up using specially tagged CMS pages in
combination with a djangoCMS apphook. This works perfectly well for most implementation, but some sites may
require categories implemented independently of the CMS.

Using an external djangoSHOP plugin for managing categories is a very conceivable solution, and we will see separate
implementations for this feature request. Using such an external category plugin can make sense, if this e-commerce
site requires hundreds of hierarchical levels and/or these categories require a set of attributes which are not available
in CMS pages. If you are going to use externally implemented categories, please refer to their documentation, since
here we proceed using CMS pages as categories.

42 Chapter 4. Reference

https://github.com/divio/django-filer
http://docs.django-cms.org/en/stable/how_to/apphooks.html


djangoSHOP, Release 0.9.1

A nice aspect of djangoSHOP is, that it doesn’t require the programmer to write any special Django Views in order to
render the catalog. Instead all merchant dependent business logic goes into a serializer, which in this documentation
is referred as ProductSummarySerializer.

4.5.1 Catalog List View

In this documentation, the catalog list view is implemented as a djangoCMS page. Depending on whether the e-
commerce aspect of that site is the most prominent part, or just a niche of the CMS select an appropriate location in
the page tree and create a new page. This will become the root of our catalog list.

But first we must Create the ProductsListApp.

Create the ProductsListApp

To retrieve a list of product models, the Catalog List View requires a djangoCMS apphook. This ProductsListApp
must be added into a file named cms_app.py and located in the root folder of the merchant’s project:

Listing 4.1: myshop/cms_app.py

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

class ProductsListApp(CMSApp):
name = _("Catalog List")
urls = ['myshop.urls.products']

apphook_pool.register(ProductsListApp)

as all apphooks, it requires a file defining its urlpatterns:

Listing 4.2: myshop/urls/products.py

from django.conf.urls import patterns, url
from rest_framework.settings import api_settings
from shop.views.catalog import CMSPageProductListView
from myshop.serializers import ProductSummarySerializer

urlpatterns = patterns('',
url(r'^$', CMSPageProductListView.as_view(

serializer_class=ProductSummarySerializer,
)),
# other patterns

)

Here the ProductSummarySerializer serializes the product models into a representation suitable for being
rendered inside a CMS page, as well as being converted to JSON. This allows us to reuse the same Django View
(CMSPageProductListView) whenever the catalog list switches into infinite scroll mode, where it only requires
the product’s summary digested as JavaScript objects.

In case we need Additional Product Serializer Fields, lets add them to this class using the serializer fields from the
Django RESTFramework library.

4.5. Catalog 43

http://docs.django-cms.org/en/stable/how_to/apphooks.html
http://www.django-rest-framework.org/api-guide/fields/


djangoSHOP, Release 0.9.1

Add the Catalog to the CMS

In the page list editor of djangoCMS, create a new page at an appropriate location of the page tree. As the page title
and slug we should use something describing our product catalog in a way, both meaningful to the customers as well
as to search engines.

Next, we change into advanced setting.

As a template we use one with a big placeholder, since it must display our list of products.

As Application, select “Catalog List” or whatever we named our ProductsListApp. This selects the apphook we
created in the previous section.

Then we save the page, change into Structure mode and locate the Main Content Container. Here we add a container
with a Row and Column. As the child of this column we chose a Catalog List View plugin from section Shop.

Finally we publish the page and enter some text into the search field. Since we haven’t assigned any products to the
CMS page, we won’t see anything yet.

4.5.2 Catalog Detail View

The product’s detail pages are the only ones not being managed by the CMS. This is because we often have thousands
of products and creating a CMS page for each of them, would be kind of overkill.

Therefore the template used to render the products’s detail view is selected automatically by the
ProductRetrieveView 1 following these rules:

• look for a template named <myshop>/catalog/<product-model-name>-detail.html 2 3, other-
wise

• look for a template named <myshop>/catalog/product-detail.html 2, otherwise

• use the template shop/catalog/product-detail.html.

Use CMS Placeholders on Detail View

If we require CMS functionality for each product’s detail page, its quite simple to achieve. To the model class im-
plementing our Product, add djangoCMS Placeholder field named placeholder.Then add the templatetag {%
render_placeholder product.placeholder %} the the template implementing the detail view of our
product.

Route requests on Detail View

The ProductsListApp, which we previously have registered into djangoCMS, is able to route requests on all of
its sub-URLs. This is done by expanding the current list of urlpatterns:

Listing 4.3: myshop/urls/products.py

from django.conf.urls import patterns, url
from shop.views.catalog import ProductRetrieveView
from myshop.serializers import ProductDetailSerializer

urlpatterns = patterns('',

1 This is the View class responsible for rendering the product’s detail view.
2 <myshop> is the app label of the project in lowercase.
3 <product-model-name> is the class name of the product model in lowercase.

44 Chapter 4. Reference

http://django-cms.readthedocs.org/en/stable/how_to/placeholders.html


djangoSHOP, Release 0.9.1

# previous patterns
url(r'^(?P<slug>[\w-]+)$', ProductRetrieveView.as_view(

serializer_class=ProductDetailSerializer,
)),
# other patterns

)

All business logic regarding our product now goes into our customized serializer class named
ProductDetailSerializer. This class then may access the various attributes of our product model and
merge them into a serializable representation.

This serialized representation normally requires all attributes from our model, therefore we can write it as simple as:

from shop.rest.serializers import ProductDetailSerializerBase

class ProductDetailSerializer(ProductDetailSerializerBase):
class Meta:

model = Product
exclude = ('active',)

In case we need Additional Product Serializer Fields, lets add them to this class using the serializer fields from the
Django RESTFramework library.

Additional Product Serializer Fields

Sometimes such a serializer field shall return a HTML snippet; this for instance is required for image source (<img
src="..." />) tags, which must thumbnailed by the server when rendered using the appropriate templatetags from
the easythumbnail library. For these use cases add a field of type foo = SerializerMethodField() with an
appropriate method get_foo() to our serializer class. This method then may forward the given product to a the
built-in renderer:

class ProductDetailSerializer(ProductDetailSerializerBase):
# other attributes

def get_foo(self, product):
return self.render_html(product, 'foo')

This HTML renderer method looks up for a template following these rules:

• look for a template named <myshop>/product/catalog-<product-model-name>-<second-argument>.html
4 5 6, otherwise

• look for a template named <myshop>/product/catalog-product-<second-argument>.html 4

6, otherwise

• use the template shop/product/catalog-product-<second-argument>.html 6.

Emulate Categories

Since we want to use CMS pages to emulate categories, the product model must declare a relationship between the
CMS pages and itself. This usually is done by adding a Many-to-Many field named cms_pages to our Product
model.

4 <myshop> is the app label of the project in lowercase.
5 <product-model-name> is the class name of the product model in lowercase.
6 <field-name> is the attribute name of the just declared field in lowercase.

4.5. Catalog 45

http://www.django-rest-framework.org/api-guide/fields/
https://easy-thumbnails.readthedocs.org/en/stable/usage/#templates
https://easy-thumbnails.readthedocs.org/en/stable/usage/#templates


djangoSHOP, Release 0.9.1

Since we work with deferred models, we can not use the mapping table, which normally is generated automatically for
Many-to-Many fields by the Django framework. Instead, this mapping table must be created manually and referenced
using the though parameter, when declaring the field:

from shop.models.product import BaseProductManager, BaseProduct
from shop.models.related import BaseProductPage

class ProductPage(BaseProductPage):
"""Materialize many-to-many relation with CMS pages"""

class Product(BaseProduct):
# other model fields
cms_pages = models.ManyToManyField('cms.Page',

through=ProductPage)

objects = ProductManager()

In this example the class ProductPage is responsible for storing the mapping information between our Product
objects and the CMS pages.

Admin Integration

To simplify the declaration of the admin backend used to manage our Product model, djangoSHOP is shipped with a
special mixin class, which shall be added to the product’s admin class:

from django.contrib import admin
from shop.admin.product import CMSPageAsCategoryMixin
from myshop.models import Product

@admin.register(Product)
class ProductAdmin(CMSPageAsCategoryMixin, admin.ModelAdmin):

fields = ('product_name', 'slug', 'product_code',
'unit_price', 'active', 'description',)

# other admin declarations

This then adds a horizontal filter widget to the product models. Here the merchant must select each CMS page, where
the currently edited product shall appear on.

If we are using the method render_html() to render HTML snippets, these are cached by djangoSHOP, if caching
is configured and enabled for that project. Caching these snippets is highly recommended and gives a noticeable
performance boost, specially while rendering catalog list views.

Since we would have to wait until they expire naturally by reaching their expire time, djangoSHOP offers a mixin
class to be added to the Product admin class, to expire all HTML snippets of a product altogether, whenever a prod-
uct in saved in the backend. Simply add shop.admin.product.InvalidateProductCacheMixin to the
ProductAdmin class described above.

Note: Due to the way keys are handled in many caching systems, the InvalidateProductCacheMixin only
makes sense if used in combination with the redis_cache backend.

4.6 Filter Products by its Attributes

Besides Full Text Search, adding some filter functionality to an e-commerce site is another very important feature.
Customers must be able to narrow down the list of available products to a set of desired products using a combination

46 Chapter 4. Reference

http://django-redis-cache.readthedocs.org/en/stable/


djangoSHOP, Release 0.9.1

of prepared filter attributes.

Since in djangoSHOP each product class declares its own database model with its own attributes, often related with
foreign data models, filtering must be implemented by the merchant on top of the existing product models. Fortunately
the REST framework in combination with ‘Django Filter‘_ makes this a rather simple task.

4.6.1 Adding a filter to the List View

In djangoSHOP listing the products normally is controlled by shop.views.catalog.ProductListView or
shop.views.catalog.CMSPageProductListView. By default these View classes are configured to use the
default filter backends as provided by the REST framework. These filter backends can be configured globally through
the settings variable DEFAULT_FILTER_BACKENDS.

Additionally we can subclass the filter backends for each View class in our urls.py. Say, we need a special catalog
filter, which groups our products by a certain product attribute. Then we can create customized filter backend

Listing 4.4: filters.py

from rest_framework.filters import BaseFilterBackend

class CatalogFilterBackend(BaseFilterBackend):
def filter_queryset(self, request, queryset, view):

queryset = queryset.order_by('attribute__sortmetric')
return queryset

In urls.py, where we route requests to the class shop.views.catalog.ProductListView, we then replace
the default filter backends by our own implementation:

Listing 4.5: myshop/urls/catalog.py

from django.conf.urls import patterns, url
from rest_framework.settings import api_settings
from shop.views.catalog import ProductListView
from myshop.serializers import ProductSummarySerializer

urlpatterns = patterns('',
url(r'^$', ProductListView.as_view(

serializer_class=ProductSummarySerializer,
filter_backends=[CatalogFilterBackend],

),
)

The above example is very simple but gives a rough impression on its possibilities.

Working with Django-Filter

django-filter is a generic, reusable application to alleviate writing some of the more mundane bits of view code.
Specifically, it allows users to filter down a queryset based on a model’s fields, displaying the form to let them do this.

REST framework also includes support for generic filtering backends that allow you to easily construct complex
searches and filters.

By creating a class which inherit from django_filters.FilterSet, we can build filters against each attribute
of our product. This filter then uses the passed in query parameters to restrict the set of products available from our
catalog:

4.6. Filter Products by its Attributes 47

http://django-filter.readthedocs.org/en/latest/usage.html
http://www.django-rest-framework.org/api-guide/filtering/#generic-filtering


djangoSHOP, Release 0.9.1

Listing 4.6: myshop/filters.py

import django_filters

class ProductFilter(django_filters.FilterSet):
width = django_filters.RangeFilter(name='width')
props = django_filters.MethodFilter(action='filter_properties', widget=SelectMultiple)

class Meta:
model = OurProduct
fields = ['width', 'props']

def filter_properties(self, queryset, values):
for value in values:

queryset = queryset.filter(properties=value)
return queryset

This example assumes that OurProduct has a numeric attribute named width and a many-to-many field named
properties.

We then can add this filter to the list view for our products. In djangoSHOP we normally do this through the url
patterns:

Listing 4.7: myshop/urls.py

urlpatterns = patterns('',
url(r'^$', ProductListView.as_view(

serializer_class=ProductSummarySerializer,
filter_class=ProductFilter,

)),
# other patterns

)

By appending ?props=17 to the URL, the above filter class will restrict the products in our list view to those with a
property of 17.

4.7 Cascade Plugins

DjangoSHOP extends the eco-system of djangoCMS plugins, djangocms-cascade, by additional shop-specific plug-
ins. This allows us to create a whole shopping site, which consists of many different elements, without having to craft
templates by hand – with one exception: The product detail views.

Therefore all we have to focus on, is a default page template with one big placeholder. This placeholder then is
subdivided into containers, rows, columns and other elements of the Cascade plugin collection.

This however requires a completely different approach, from the designer point of view. The way web design was
done a few years ago, starting with the screenshot of a finished page, must be rethought. This has been discussed in
length by many web-designers, especially by Brad Frost in his excellent book on Atomic Web Design. He propagates
to reverse the design process and start with the smallest entity, which he calls Atoms. They form to bigger components,
named Molecules, which themselves aggregate to Organisms.

Some designers nowadays build those components directly in HTML and CSS or SASS, instead of drawing their
screens using programs such as InDesign or PhotoShop (which by the way never was intended for this kind of work).
It also exempts having the programmer to convert those screens into HTML and CSS – a time consuming and never
satisfying job.

48 Chapter 4. Reference

http://djangocms-cascade.readthedocs.org/en/latest/
http://atomicdesign.bradfrost.com/table-of-contents/


djangoSHOP, Release 0.9.1

According to Frost, the next bigger component after the Organism is the template. This is where djangocms-cascade
jumps in. Each of the Cascade plugins is shipped with its own default template, which can easily be overwritten by
the designers own implementation.

4.7.1 Overriding Templates

For all plugins described here, we can override the provided templates with our own implementation. If the shop
framework provides a template, named /shop/folder/my-organism.html, then we may override it using
/merchantimplementaion/folder/my-organism.html.

This template then usually extends the existing framework template with

{% extends "/shop/folder/my-organism.html" %}

{% block shop-some-identifier %}
<div>...</div>

{% endblock %}

This is in contrast to Django’s own implementation for searching the template, but allows to extend exiting templates
more easily.

4.7.2 Breadcrumb

The BreadcrumbPlugin has four different rendering options: Default, Soft-Root, With Catalog Count and Empty. It
can be added exclusively to the placeholder named Breadcrumb, unless otherwise configured.

The Default breadcrumb behaves as expected. Soft-Root appends the page title to the existing breadcrumb, it shall be
used for pages marked as soft root. A breadcrumb of type With Catalog Count adds a badge containing the number of
items. Use an Empty to hide the breadcrumb otherwise displayed by the placeholder as default.

4.7.3 Cart

The CartPlugin has four different rendering options: Editable, Static, Summary and Watch-List. Refer to the Cart
using a Cascade Plugin for details.

4.7.4 Checkout Forms

All Forms added to the checkout page are managed by members of the Cascade plugin system. All these plugin
inherit from a common base class, shop.cascade.plugin_base.DialogFormPluginBase. They all have
in common to render and validate one specific Form, which itself inherits from shop.forms.DialogForm or
shop.forms.DialogModelForm.

A nice aspect of this approach is, that ...

• if we add, change or delete attributes in a form, fields are added, changed or deleted from the rendered HTML
as well.

• we get client side form validation for free, without having to write any Javascript nor HTML.

• if we add, change or delete attributes in a form, this modification propagates down to both form validation
controllers: That one in Javascript used on the client as well as the final one, validating the form on the server.

• if our forms are made out of models, all of the above works as well.

• we can arrange each of those form components using the Structure editor from djangoCMS toolbar. This is
much faster, than by crafting templates manually.

4.7. Cascade Plugins 49



djangoSHOP, Release 0.9.1

As we can see from this approach, djangoSHOP places great value on the principles of a Single Source of Truth,
when working with customized database models and forms.

Many of these Forms can be rendered using two different approaches:

Form dialog

Here we render all model fields as input fields and group them into an editable form. This is the normal use case.

Static summary

Here we render all model fields as static strings without wrapping it into a form. This shall be used to summarize all
inputs, preferably on the last process step.

These are the currently available plugins provided by djangoSHOP to build the checkout page:

Customer Form Plugin

The Customer Form is used to query information about some personal information, such as the salutation, the
first- and last names, its email address etc. In simple terms, this form combines the fields from the model classes
shop.models.customer.Customer and email_auth.models.User or auth.models.User respec-
tively. This means that fields, we add to our Customer model, are reflected automatically into this form.

Guest Form Plugin

The Guest Form is a reduced version of the Customer Form. It only asks for the email address, but nothing else. We
use it for customers which do not want to create an account.

Shipping- and Billing Address Forms

There are two form plugins, where customers can add their shipping and/or billing address. The billing
address offers a checkbox allowing to reuse the shipping address. By overriding the form templates, this
behavior can be switched. Both plugins provide a form made up from the model class implementing
shop.models.address.AddressModel.

Select the Payment Provider

For each payment provider registered within djangoSHOP, this plugin creates a list of radio buttons, where customers
can chose their desired payment provider. By overriding the rendering templates, additional forms, for instance to add
credit card data, can be added.

Select a Shipping Method

For each shipping provider registered within djangoSHOP, this plugin creates a list of radio buttons, where customers
can chose their desired shipping method.

50 Chapter 4. Reference

https://en.wikipedia.org/wiki/Single_Source_of_Truth


djangoSHOP, Release 0.9.1

Extra Annotations Plugin

This plugin provides a form, where customers can enter an extra annotation, while they proceed through the checkout
process.

Accept Condition Plugin

Normally customers must click onto a checkbox to accept various legal requirements, such as the terms and conditions
of this site. This plugin offers a text editor, where the merchant can enter a paragraph, possibly with a link onto another
CMS page explaining them in more details.

Required Form Fields Plugin

Most checkout forms have one or more required fields. To labels of required input fields, an asterisk is appended. This
plugin can be used to add a short text message stating “* These fields are required”. It normally should be placed
between the last checkout form and the proceed button.

Proceed Button

This plugin adds a styleable proceed button to any placeholder. This kind of button differs from a clickable link
button in that sense, that it first sends all gathered form data to the server and awaits a response. Only if all forms are
successfully validated, this button proceeds to the given link.

This proceed button can also handle two non-link targets: “Reload Page” and “Purchase Now”.

The first target is useful to reload the page in a changed context, for instance if a site visitor logged in and now shall
get a personalized page.

The second target is special to djangoSHOP and exclusively used, when the customer performs The Purchasing
Operation.

4.7.5 Authentication

Before proceeding with various input forms, we must know the authentication status of our site visitors. These different
states are explained here in detail: Anonymous Users and Visiting Customers.

Therefore we need pluggable forms, where visitors can sign in and out, change and rest passwords and so on. All this
authentication forms are handled by one single plugin

This plugin handles a bunch of authentication related forms. Lets list them:

Login Form

This is a simple login form accepting a username and password.

4.7. Cascade Plugins 51



djangoSHOP, Release 0.9.1

This form normally is used in combination with Link type: CMS Page.

Logout Form

This logout form just adds a button to sign out from the site.

This form normally is used in combination with Link type: CMS Page.

Shared Login/Logout Form

This combines the Login Form with the Logout Form so, that anonymous visitors see the login form, while logged in
users see the logout form. This form normally is used in combination with Link type: Reload Page.

Password Reset Form

This form offers a field, so that registered users, which forgot their password, can enter their email address to start a
password reset procedure.

52 Chapter 4. Reference



djangoSHOP, Release 0.9.1

Login & Reset Form

This extends the Shared Login/Logout Form by combining it with the Password Reset Form form.

If someone clicks on the link Password Forgotten? the form extends to

4.7. Cascade Plugins 53



djangoSHOP, Release 0.9.1

This form normally is used in combination with Link type: Reload Page.

Change Password Form

This form offers two field to change the password. It only appears for logged in users.

54 Chapter 4. Reference



djangoSHOP, Release 0.9.1

Register User Form

Using this form, anonymous visitors can register themselves. After having entered their email address and their desired
passwords, they become registered users.

4.7. Cascade Plugins 55



djangoSHOP, Release 0.9.1

This form normally is used in combination with Link type: Reload Page.

Continue as Guest Form

This form just adds a button, so that visitors can declare themselves as guest users who do not want to register an
account, nor expose their identity.

56 Chapter 4. Reference



djangoSHOP, Release 0.9.1

This form normally is used in combination with Link type: Reload Page.

4.7.6 Process Bar

The ProcessBarPlugin can be used to group many forms plugins onto the same page, by dividing them up into
different block. Only one block is visible at a time. At to top of that page, a progress bar appears which shows the
active step.

This plugin checks the validity of all of its forms and allows to proceed to the next step only, if all of them are valid.

Each step in that process bar must contain a Next Step Button, so that the customer can move to the next step, provided
all forms are valid.

The last step shall contain a Proceed Button which shall be configured to take appropriate action, for instance to start
the purchasing operation using the Link type “Purchase Now”.

Note: This plugin requires the AngularJS directive <bsp-process-bar> as found in the bower package angular-
bootstrap-plus.

4.7.7 Catalog

The catalog list view is handled by the ShopCatalogPlugin.

4.7. Cascade Plugins 57

https://github.com/jrief/angular-bootstrap-plus
https://github.com/jrief/angular-bootstrap-plus


djangoSHOP, Release 0.9.1

This plugin requires a CMS page, which uses the apphook ProductsListApp. First assure that we Create the Prod-
uctsListApp. This CMSapp must be implemented by the merchant; it thus is part of the project, rather than the
djangoSHOP framework.

4.7.8 Viewing Orders

The Order Views plugin is used to render the list- and detail views of orders, specific to the currently logged in
customer. Without a number in the URL, a list of all orders belonging to the current customer is shown. By adding
the primary key of a specific order to the URL, all ordered items from that specific order are shown. We name this the
order detail view, although it is a list of items.

This plugin requires a CMS page, which as uses the CMSApp OrderApp. This CMS application is part of the shop
framework and always available in the Advanced Settings of each CMS page.

The Order List- and Detail Pages share one common entity in our CMS page tree. The Order Detail view just rendered
in a different way. Editing this pseudo page therefore is not possible because it is not part of the CMS.

4.7.9 Search Results

Rendering search results is handled by the Search Results plugin.

On a site offering full-text search, add a page to display search results. First assure that we have a Search View assigned
to that page as apphook. This CMSapp must be implemented by the merchant; it thus is part of the project, rather than
the djangoSHOP framework.

4.8 Cart and Checkout

In djangoSHOP the cart’s content is always stored inside the database. In previous versions of the software, the cart’s
content was kept inside the session for anonymous users and stored in the database for logged in users. Now the cart
is always stored in the database. This approach simplifies the code and saves some random access memory, but adds
another minor problem:

From a technical point of view, the checkout page is the same as the cart. They can both be on separate pages, or be
merged on the same page. Since what we would normally name the “Checkout Page”, is only a collection of Cascade
Plugins, we won’t go into further detail here.

4.8.1 Expired Carts

Sessions expire, but then the cart’s content of anonymous customers still remains in the database. We therefore must
assure that these carts will expire too, since they are of no use for anybody, except maybe for some data-mining.

By invoking

./manage.py shopcustomers
Customers in this shop: total=3408, anonymous=140, expired=88,

active=1108, guests=2159, registered=1109, staff=5.

we gather some statistics about former visiting customers of our djangoSHOP. Here we see that 1109 customers
bought as registered users, while 2159 bought as guests. There are 88 customers in the database, but they don’t have
any associated session anymore, hence they can be considered as expired. Invoking

./manage.py shopcustomers --delete-expired

58 Chapter 4. Reference

http://docs.django-cms.org/en/latest/how_to/apphooks.html
http://docs.django-cms.org/en/latest/how_to/apphooks.html


djangoSHOP, Release 0.9.1

deletes those expired customers, and with them their expired carts. This task shall be performed by a cronjob on a
daily basis.

4.8.2 Cart Models

The cart consists of two models classes Cart and CartItem, both inheriting from BaseCart and
BaseCartItem respectively. As with most models in djangoSHOP, these are using the Deferred Model Pat-
tern, so that inheriting from a base class automatically sets the foreign keys to the appropriate model. This gives the
programmer the flexibility to add as many fields to the cart, as the merchant requires for his special implementation.

In most use-cases, the default cart implementation will do the job. These default classes can be found at
shop.models.defaults.cart.Cart and shop.models.defaults.cart_item.CartItem. To ma-
terialize the default implementation, it is enough to import these two files into the merchants shop project. Otherwise
we create our own cart implementation inheriting from BaseCart and BaseCartItem. Since the item quantity
can not always be represented by natural numbers, this field must be added to the CartItem implementation rather
than its base class. Its field type must be countable, so only IntegerField, FloatField or DecimalField
are allowed as quantity.

Note: Assure that the model CartItem is imported (and materialized) before model Product and classes derived
from it.

The Cartmodel uses its own manager. Since there is only one cart per customer, accessing the cart must be performed
using the request object. We can always access the cart for the current customer by invoking:

from shop.models.cart import CartManager

cart = CartManager.get_or_create_from_request(request)

Adding a product to the cart, must be performed by invoking:

from shop.models.cart import CartItemManager

cart_item = CartItemManager.get_or_create(cart=cart,
product=product, quantity=quantity, **extras)

This returns a new cart item object, if the given product could not be found in the current cart. Otherwise it returns
the existing cart item, increasing the quantity by the given value. For products with variations it’s not always trivial
to determine if they shall be considered as existing cart items, or as new ones. Since djangoSHOP can’t tell that
difference for any kind of product, it delegates this question. Therefore the class implementing the shop’s products
shall override their method is_in_cart. This method is used to tell the CartItemManager whether a product
has already been added to the cart or is new.

Whenever the method cart.update(request) is invoked, the cart modifiers run against all items in the cart.
This updates the line totals, the subtotal, extra costs and the final sum.

Watch List

Instead of implementing a separate watch-list (some would say wish-list), djangoSHOP uses a simple trick. Whenever
the quantity of a cart item is zero, this item is considered to be in the watch list. Otherwise it is considered to be in the
cart. The train of though is as follows: A quantity of zero, never makes sense for items in the cart. On the other side,
any quantity makes sense for items in the watch-list. Therefore reducing the quantity of a cart item to zero is the same
as keeping an eye on it, without actually wanting it to purchase.

4.8. Cart and Checkout 59



djangoSHOP, Release 0.9.1

4.8.3 Cart Views

Displaying the cart in djangoSHOP is as simple, as adding any other page to the CMS. Change into the Django
admin backend and enter into the CMS page tree. At an appropriate location in that tree add a new page. As page
title use “Cart”, “Basket”, “Warenkorb”, “Cesta”, or whatever is appropriate in the natural language used for that site.
Multilingual CMS installations offer a page title for each language.

In the CMS page editor click onto the link named Advanced Settings at the bottom of the popup window. As template,
chose the default one, provided it contains at least one big placeholder.

Enter “shop-cart” into the Id-field just below. This identifier is required by some templates which link directly onto
the cart view page. If this field is not set, some links onto the cart page might not work properly.

It is suggested to check the checkbox named Soft root. This prevents that a menu item named “Cart” will appear side
by side with other pages from the CMS. Instead, we prefer to render a special cart symbol located on the right of the
navigation bar.

Cart using a Cascade Plugin

Click onto View on site and change into front-end editing mode to use the grid-system of djangocms-cascade. Locate
the main placeholder and add a Row followed by at least one Column plugin; both can be found in section Bootstrap.
Below that column plugin, add a child named Cart from section Shop. This Cart Plugin can be rendered in four
different ways:

Editable Cart

An “Editable Cart” is rendered using the Angular JS template engine. This means that a customer may change the
number of items, delete them or move them the the watch-list. Each update is reflected immediately into the cart’s
subtotal, extra fields and final totals.

Using the above structure, the rendered cart will look similar to this.

60 Chapter 4. Reference

http://django-cms.readthedocs.org/en/latest/introduction/templates_placeholders.html#placeholders
http://djangocms-cascade.readthedocs.org/en/latest/


djangoSHOP, Release 0.9.1

Depending on the chosen template, this layout may vary.

Static Cart

An alternative to the editable cart is the ‘static cart’. Here the cart items are rendered by the Django template engine.
Since here everything is static, the quantity can’t be changed anymore and the customer would have to proceed to the
checkout without being able to change his mind. This probably only makes sense when purchasing a single product.

Cart Summary

This only displays the cart’s subtotal, the extra cart fields, such as V.A.T., shipping costs and the final total.

Watch List

A special view of the cart is the watch list. It can be used by customers to remember items they want to compare or buy
sometimes later. The watch-list by default is editable, but does not allow to change the quantity. This is because the
watch-list shares the same object model as the cart items. If the quantity of an item 0, then that cart item is considered
to be watched. If instead the quantity is 1 ore more, the item is considered to be in the cart. It therefore is very easy to
move items from the cart to the watch-list and vice versa. This concept also disallows to have an item in both the cart
and the watch-list. This during online shopping, often can be a major point of confusion.

4.8. Cart and Checkout 61



djangoSHOP, Release 0.9.1

Render templates

The path of the templates used to render the cart views is constructed using the following rules:

• Look for a folder named according to the project’s name, ie. settings.SHOP_APP_LABEL in lower case.
If no such folder can be found, then use the folder named shop.

• Search for a subfolder named cart.

• Search for a template named editable.html, static.html, watch.html or summary.html.

These templates are written to be easily extensible by the customized templates. To override the “editable cart”
add a template with the path, say myshop/cart/editable.html to the projects template folder. This tem-
plate then shall begin with {% extend "shop/cart/editable.html" %} and only override the {% block
%}...{% endblock %} interested in.

Many of these template blocks are themselves embedded inside HTML elements such as <script
id="shop/....html" type="text/ng-template">. The reason for this is that the editable cart is ren-
dered in the browser by AngularJS using so called directives. Hence it becomes very straight-forward to override
Angular’s script templates using Django’s internal template engine.

Multiple templates If for some special reasons we need different cart templates, then we must add this line to the
projects settings.py:

CMSPLUGIN_CASCADE_PLUGINS_WITH_EXTRA_RENDER_TEMPLATES = {
'ShopCartPlugin': (

(None, _("default")), # the default behavior
('myproject/cart/other-editable.html', _("extra editable")),

)
}

This will add an extra select button to the cart editor. The site administrator then can chose between the default
template and an extra editable cart template.

Proceed to Checkout On the cart’s view, the merchant may decide whether to implement the checkout forms to-
gether with the cart, or to create a special checkout page onto which the customer can proceed. From a technical point
of view, it doesn’t make any difference, if the cart and the checkout are combined on the same CMS page, or if they
are split across two or more pages. In the latter case simply add a button at the end of each page, so that the customer
can easily proceed to the next one.

On the checkout page, the customer has to fill out a few forms. These can be a contact form, shipping and billing
addresses, payment and shipping methods, and many more. Which ones depend on the configuration, the legal regula-
tions and the requirements of the shop’s implementation. In Cascade Plugins all shop specific CMS plugins are listed.
They can be combined into whatever makes sense for a successful checkout.

Add a Cart via manually written Cart Template

Instead of using the CMS plugin system, the template for the cart can also be implemented manually. Based on an
existing page template, locate the element, where the cart shall be inserted. Then use one of the existing templates
in the folder django-shop/shop/templates/shop/cart/ as a starting point, and insert it at an appropri-
ate location in the page template. Next, in the project’s settings.py, add this specialized template to the list
CMS_TEMPLATES and select it for that page.

From a technical point of view, it does not make any difference whether we use the cart plugin or a handcrafted
template. If the HTML code making up the cart has to be adopted to the merchants needs, we normally are better off

62 Chapter 4. Reference

https://docs.angularjs.org/guide/directive
https://docs.angularjs.org/api/ng/directive/script


djangoSHOP, Release 0.9.1

and much more flexible, if we override the template code as described in section Render templates. Therefore, it is
strongly discouraged to craft cart and checkout templates by hand.

4.8.4 Cart Modifiers

Cart Modifiers are simple plugins that allow the merchant to define rules in a programmatic way, how the totals of
a cart are computed and how they are labeled. A typical job is to compute tax rates, adding discounts, shipping and
payment costs, etc.

Instead of implementing each possible combination for all of these use cases, the djangoSHOP framework offers
an API, where third party applications can hooks into every computational step. One thing to note here is that Cart
Modifiers are not only invoked, when the cart is complete and the customer wants to proceed to the checkout, but also
for each item before being added to the cart.

This allows the programmer to vary the price of certain items, depending on the current state of the cart. It can for
instance be used, to set one price for the first item, and other prices for every further items added to the cart.

Cart Modifiers are split up into three different categories: Generic, Payment and Shipping. In the shops
settings.py they must be configured as a list or tuple such as:

SHOP_CART_MODIFIERS = (
'shop.modifiers.defaults.DefaultCartModifier',
'shop.modifiers.taxes.CartExcludedTaxModifier',
'myshop.modifiers.PostalShippingModifier',
'shop.modifiers.defaults.PayInAdvanceModifier',
'shop_stripe.modifiers.StripePaymentModifier',

)

When updating the cart, these modifiers are applied in the order of the above list. Therefore it makes a difference, if
taxes are applied before or after having applied the shipping costs.

Moreover, whenever in the detail view the quantity of a product is updated, then all configured modifiers are ran for
that item. This allows the ItemModelSerializer, to even change the unit price of product depending on the total
content of the cart.

Cart modifiers are easy to write and they normally consist only of a few lines of code. It is the intention of djan-
goSHOP to seed an eco-system for these kinds of plugins.

Here is an incomplete list of some useful cart modifiers.

Generic Cart Modifiers

These kinds of cart modifiers are applied unconditionally onto the cart. A typical instance is the
DefaultCartModifier, the CartIncludeTaxModifier or the CartExcludeTaxModifier.

DefaultCartModifier

The shop.modifiers.default.DefaultCartModifier is required for almost every shopping cart. It han-
dles the most basic calculations, ie. multiplying the items unit prices with the chosen quantity. Since this modifier sets
the cart items line total, it must be listed as the first entry in SHOP_CART_MODIFIERS.

Payment Cart Modifier

From these kinds of modifiers, only that for the chosen payment method is applied. Payment Modifiers are used to
add extra costs or discounts depending on the chosen payment method. By overriding the method is_disabled a

4.8. Cart and Checkout 63



djangoSHOP, Release 0.9.1

payment method can be disabled; useful to disable certain payments in case the carts total is below a certain threshold.

Shipping Cart Modifier

From these kinds of modifiers, only that for the chosen shipping method is applied. Shipping Modifiers are used to
add extra costs or discounts depending on chosen shipping method, the number of items in the cart and their weight.
By overriding the method is_disabled a shipping method can be disabled; useful to disable certain payments in
case the carts total is below a certain threshold.

How Modifiers work

Cart modifiers should extend the shop.modifiers.base.BaseCartModifier class and extend one or more
of the given methods:

Note: Until version 0.2 of djangoSHOP, the Cart Modifiers returned the amount and label for the extra item rows,
and djangoSHOP added them up. Since Version 0.3 cart modifiers must change the line subtotals and cart total
themselves.

class shop.modifiers.base.BaseCartModifier(identifier=None)
Cart Modifiers are the cart’s counterpart to backends.

It allows to implement taxes and rebates / bulk prices in an elegant and reusable manner: Every time the cart is
refreshed (via it’s update() method), the cart will call all subclasses of this modifier class registered with their
full path in settings.SHOP_CART_MODIFIERS.

The methods defined here are called in the following sequence: 1. pre_process_cart: Totals are not computed,
the cart is “rough”: only relations and quantities are available 1a. pre_process_cart_item: Line totals are not
computed, the cart and its items are “rough”: only relations and quantities are available 2. process_cart_item:
Called for each cart_item in the cart. The modifier may change the amount in cart_item.line_total. 2a.
add_extra_cart_item_row: It optionally adds an object of type ExtraCartRow to the current cart item. This
object adds additional information displayed on each cart items line. 3. process_cart: Called once for the whole
cart. Here, all fields relative to cart items are filled. Here the carts subtotal is used to computer the carts total.
3a. add_extra_cart_row: It optionally adds an object of type ExtraCartRow to the current cart. This object adds
additional information displayed in the carts footer section. 4. post_process_cart: all totals are up-to-date, the
cart is ready to be displayed. Any change you make here must be consistent!

Each method accepts the HTTP request object. It shall be used to let implementations determine their prices
according to the session, and other request information. The request object also can be used to store arbitrary
data to be passed between modifers using the temporary dict request.cart_modifiers_state.

add_extra_cart_item_row(cart_item, request)
Optionally add an ExtraCartRow object to the current cart item.

This allows to add an additional row description to a cart item line. This method optionally utilizes or
modifies the amount in cart_item.line_total.

add_extra_cart_row(cart, request)
Optionally add an ExtraCartRow object to the current cart.

This allows to add an additional row description to the cart. This method optionally utilizes cart.subtotal
and modifies the amount in cart.total.

arrange_cart_items(cart_items, request)
Arrange all items, which are intended for the shopping cart. Override this method to resort and regroup
the returned items.

64 Chapter 4. Reference



djangoSHOP, Release 0.9.1

arrange_watch_items(watch_items, request)
Arrange all items, which are being watched. Override this method to resort and regroup the returned items.

post_process_cart(cart, request)
This method will be called after the cart was processed in reverse order of the registered cart modifiers.
The Cart object is “final” and all the fields are computed. Remember that anything changed at this point
should be consistent: If updating the price you should also update all relevant totals (for example).

pre_process_cart(cart, request)
This method will be called before the Cart starts being processed. It shall be used to populate the cart with
initial values, but not to compute the cart’s totals.

pre_process_cart_item(cart, item, request)
This method will be called for each item before the Cart starts being processed. It shall be used to populate
the cart item with initial values, but not to compute the item’s linetotal.

process_cart(cart, request)
This will be called once per Cart, after every line item was treated by method process_cart_item.

The subtotal for the cart is already known, but the total is still unknown. Like for the line items, the total is
expected to be calculated by the first cart modifier, which typically is the DefaultCartModifier. Posterior
modifiers can optionally change the total and add additional information to the cart using an object of type
ExtraCartRow.

process_cart_item(cart_item, request)
This will be called for every line item in the Cart: Line items typically contain: product, unit_price,
quantity and a dictionary with extra row information.

If configured, the starting line total for every line (unit price * quantity) is computed by the DefaultCart-
Modifier, which typically is listed as the first modifier. Posterior modifiers can optionally change the cart
items line total.

After processing all cart items with all modifiers, these line totals are summed up to form the carts subtotal,
which is used by method process_cart.

4.9 Payment Providers

Payment Providers are simple classes, which create an interface from an external Payment Service Provider (shortcut
PSP) to our djangoSHOP framework.

Payment Providers must be aggregates of a Payment Cart Modifier. Here the Payment Cart Modifier computes extra
fees when selected as a payment method, whereas our Payment Provider class, handles the communication with the
configured PSP, whenever the customer submits the purchase request.

In djangoSHOP Payment Providers normally are packed into separate plugins, so here we will show how to create
one yourself instead of explaining the configuration of an existing Payment gateway.

A precautionary measure during payments with credit cards is, that the used e-commerce implementation never sees
the card numbers or any other sensible information. Otherwise those merchants would have to be PCI-DSS certified,
which is an additional, but often unnecessary bureaucratic task, since most PSPs handle that task for us.

4.9.1 Checkout Forms

Since the merchant is not allowed to “see” sensitive credit card information, some Payment Service Providers require,
that customers are redirected to their site so that there, they can enter their credit card numbers. This for some
customers is disturbing, because they visually leave the current shop site.

4.9. Payment Providers 65

https://en.wikipedia.org/wiki/Payment_service_provider
https://www.pcicomplianceguide.org/pci-faqs-2/


djangoSHOP, Release 0.9.1

Therefore other PSPs allow to create form elements in HTML, whose content is send to their site during the purchase
task. This can be done using a POST submission, followed by a redirection back to the client. Other providers use
Javascript for submission and return a payment token to the customer, who himself forwards that token to the shopping
site.

All in all, there are so many different ways to pay, that it is quite tricky to find a generic solution compatible for all of
them.

Here djangoSHOP uses some Javascript during the purchase operation. Lets explain how:

The Purchasing Operation

During checkout, the clients final step is to click onto a button labeled something like “Buy Now”. This button belongs
to an AngularJS controller, provided by the directive shop-dialog-proceed. It may look similar to this:

<button shop-dialog-proceed ng-click="proceedWith('PURCHASE_NOW')" class="btn btn-success">Buy Now</button>

Whenever the customer clicks onto that button, the function proceedWith(’PURCHASE_NOW’) is invoked in the
scope of the AngularJS controller, belonging to the given directive.

This function first uploads the current checkout forms to the server. There they are vali-
dated, and if everything is OK, an updated checkout context is send back to the client. See
shop.views.checkout.CheckoutViewSet.upload() for details.

Next, the success handler of the previous submission looks at the given action. In proceedWith, we used the magic
keyword PURCHASE_NOW, which starts a second submission to the server, requesting to begin with the purchase oper-
ation (See shop.views.checkout.CheckoutViewSet.purchase() for details.). This method determines
he payment provider previously chosen by the customer. It then invokes the method get_payment_request()
of that provider, which returns a Javascript expression.

On the client, this returned Javascript expression is passed to the eval() function and executed; it then normally starts
to submit the payment request, sending all credit card data to the given PSP.

While processing the payment, PSPs usually need to communicate with the shop framework, in order to inform us
about success or failure of the payment. To communicate with us, they may need a few endpoints. Each Payment
provider may override the method get_urls() returning an urlpattern, which then is used by the Django URL
resolving engine.

class MyPSP(PaymentProvider):
namespace = 'my-psp-payment'

def get_urls(self):
urlpatterns = patterns('',

url(r'^success$', self.success_view, name='success'),
url(r'^failure$', self.failure_view, name='failure'),

)
return urlpatterns

def get_payment_request(self, cart, request):
js_expression = 'scope.charge().then(function(response) { $window.location.href=response.data.thank_you_url; });'
return js_expression

@classmethod
def success_view(cls, request):

# approve payment using request data returned by PSP
cart = CartModel.objects.get_from_request(request)
order = OrderModel.objects.create_from_cart(cart, request)
order.add_paypal_payment(payment.to_dict())
order.save()

66 Chapter 4. Reference

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval


djangoSHOP, Release 0.9.1

thank_you_url = OrderModel.objects.get_latest_url()
return HttpResponseRedirect(thank_you_url)

@classmethod
def failure_view(cls, request):

"""Redirect onto an URL informing the customer about a failed payment"""
cancel_url = Page.objects.public().get(reverse_id='cancel-payment').get_absolute_url()
return HttpResponseRedirect(cancel_url)

Note: The directive shop-dialog-proceed evaluates the returned Javascript expression inside a chained
then(...)-handler from the AngularJS promise framework. This means that such a function may itself return
a new promise, which is resolved by the next then()-handler.

As we can see in this example, by evaluating arbitrary Javascript on the client, combined with HTTP-handlers for
any endpoint, djangoSHOP is able to offer an API where adding new Payment Service Providers doesn’t require any
special tricks.

4.10 Order

During checkout, at a certain point the customer has to click on a button named “Purchase Now”. This operation
performs quite a few tasks, one of them is to convert the cart with its items into an order. The final task is to reset the
cart, which means to remove its content. This operation is atomic and not reversible.

4.10.1 Order Models

An order consists of two models classes Order and OrderItem, both inheriting from BaseOrder and
BaseOrderItem respectively. As with most models in djangoSHOP, they are Deferred Model Pattern, so that
inheriting from a base class automatically sets the foreign keys to the appropriate model. This gives the programmer
the flexibility to add as many fields to the order, as the merchant requires for his special implementation.

In most use-cases, the default order implementation will do the job. These default classes can be found
at shop.models.defaults.order.Order and shop.models.defaults.order_item.OrderItem.
To materialize the default implementation, it is enough to import these two files into the merchants shop
project. Otherwise the programmer may create his own order implementation inheriting from BaseOrder and/or
BaseOrderItem.

Note: Assure that the model OrderItem is imported (and materialized) before model Product and classes derived
from it.

The order item quantity can not always be represented by natural numbers, therefore this field must be added to the
OrderItem implementation rather than its base class. Since the quantity is copied from the cart item to the order
item, its field type must must correspond to that of CartItem.quantity.

Create an Order from the Cart

Whenever the customer performs the purchase operation, the cart object is converted into a new order object by
invoking:

4.10. Order 67

https://docs.angularjs.org/api/ng/service/\protect \T1\textdollar q


djangoSHOP, Release 0.9.1

from shop.models.order import OrderModel

order = OrderModel.objects.create_from_cart(cart, request)

This operation is atomic and can take some time. It normally is performed by the payment provider, whenever a
successful payment was received.

Since the merchants implementation of Cart, CartItem, Order and OrderItem may contain extra fields the
shop framework isn’t aware of, these fields have to be converted from the cart to the order objects during the purchasing
operation.

If required the merchant’s implementation of Order shall override the method populate_from_cart(cart,
request), which provides a hook to copy those extra fields from the cart object to the order object.

Similarly the merchant’s implementation of OrderItem shall override the method
populate_from_cart_item(cart_item, request), which provides a hook to copy those extra
fields from the cart item to the order item object.

Order Numbers

In commerce it is mandatory that orders are numbered using a unique and continuously increasing sequence. Each
merchant has his own way to generate this sequence numbers and in some implementations it may even come from an
external generator, such as an ERP system. Therefore djangoSHOP does not impose any numbering scheme for the
orders. This intentionally is left over to the merchant’s implementation.

Each Order model must implement two methods, one to create and and one to retrieve the order numbers. A simple
implementation may look like this:

from django.db import models
from django.utils.datetime_safe import datetime
from shop.models import order

class Order(order.BaseOrder):
number = models.PositiveIntegerField("Order Number", null=True, default=None, unique=True)

def get_or_assign_number(self):
if self.number is None:

epoch = datetime.now().date()
epoch = epoch.replace(epoch.year, 1, 1)
qs = Order.objects.filter(number__isnull=False, created_at__gt=epoch)
qs = qs.aggregate(models.Max('number'))
try:

epoc_number = int(str(qs['number__max'])[4:]) + 1
self.number = int('{0}{1:05d}'.format(epoch.year, epoc_number))

except (KeyError, ValueError):
# the first order this year
self.number = int('{0}00001'.format(epoch.year))

return self.get_number()

def get_number(self):
return '{0}-{1}'.format(str(self.number)[:4], str(self.number)[4:])

Here the first four digits specify the year in which the order was generated, whereas the last five digits are a continuous
increasing sequence.

68 Chapter 4. Reference



djangoSHOP, Release 0.9.1

4.10.2 Order Views

Displaying the last or former orders in djangoSHOP is as simple, as adding two pages to the CMS. Change into the
Django admin backend and enter into the CMS page tree. At an appropriate location in that tree add a new page. As
page title use “My Orders”, “Ihre Bestellungen”, “Mis Pedidos”, or whatever is appropriate in the natural language
used for that site. Multilingual CMS installations offer a page title for each language.

In the CMS page editor click onto the link named Advanced Settings at the bottom of the popup window. As template,
chose the default one, provided it contains at least one big placeholder.

Enter “shop-order” into the Id-field just below. This identifier is required by some templates which link directly onto
the orders list view page. If this field is not set, some links onto this page might not work properly.

The Order Views must be rendered by their own CMS apphook. Locate the field Application and chose “View Orders”.

Below this “My Orders” page, add another page named “Thanks for Your Order”, “Danke für Ihre Bestellung” or
“Gracias por su pedido”. Change into the Advanced Settings view and as the rendering template select “Inherit the
template of the nearest ancestor”. Next enter “shop-order-last” into the Id-field just below. As Application chose
again “View Orders”.

Add the Order list view via CMS-Cascade Plugin

Click onto View on site and change into front-end editing mode to use the grid-system of djangocms-cascade. Locate
the main placeholder and add a Row followed by at least one Column plugin; both can be found in section Bootstrap.
Below that column plugin, add a child named Order Views from section Shop.

We have to perform this operation a second time for the page named “Thanks for Your Order”. The context menus for
copying and pasting may be helpful here.

Note the the page “My Orders” handles two views: By invoking it as a normal CMS page, it renders a list of all orders
the currently logged in customer has purchased at this shop:

Clicking on one of the orders in this list, changes into a detail view, where one can see a list of items purchased during
that shopping session:

The rendered list is a historical snapshot of the cart in the moment of purchase. If in the meantime the prices of
products, tax rates, shipping costs or whatever changed, then that order object always keeps the values at that time in

4.10. Order 69

http://django-cms.readthedocs.org/en/latest/introduction/templates_placeholders.html#placeholders
http://docs.django-cms.org/en/latest/how_to/apphooks.html
http://djangocms-cascade.readthedocs.org/en/latest/


djangoSHOP, Release 0.9.1

history. This even applies to translations. Strings are translated into their natural language on the moment of purchase.
Therefore the labels added to the last rows of the cart, always are rendered in the language which was used during the
checkout process.

Render templates

The path of the templates used to render the order views is constructed using the following rules:

• Look for a folder named according to the project’s name, ie. settings.SHOP_APP_LABEL in lower case.
If no such folder can be found, then use the folder named shop.

• Search for a subfolder named order.

• Search for a template named list.html or detail.html.

These templates are written to be easily extensible by the customized templates. To override them, add a template with
the path, say myshop/order/list.html to the projects template folder.

4.10.3 Order Workflows

Order Workflows are simple plugins that allow the merchant to define rules in a programmatic way, which actions to
perform, whenever a certain event happened. A typical event is the confirmation of a payment, which itself triggers
further actions, say to print a delivery note.

Instead of implementing each possible combination for all of these use cases, the djangoSHOP framework offers a
Finite State Machine, where only selected state transition can be marked as possible. These transition further can
trigger other events themselves. This prevents to accidently perform invalid actions such as fulfilling orders, which
haven’t been paid yet.

In class shop.models.order.BaseOrder contains an attribute status which is of type FSMField. In prac-
tice this is a char-field, which can hold preconfigured states, but which can not be changed by program code. Instead,
by calling specially decorated class methods, this state then changes from one or more allowed source states into one
predefined target state. We denote this as a state transition.

An incomplete example:

class Order(models.Model):
# other attributes

@transition(field=status, source='new', target='created')
def populate_from_cart(self, cart, request):

# perform some side effects ...

Whenever an Order object is initialized, its status is new and not yet persisted in the database. As we have seen
earlier, this object must be populated from the cart. If this succeeds, the status of our new Order object switches
to created. This is the default state before proceeding to our payment providers.

In djangoSHOP the merchant can add as many payment providers he wants. This is done in settings.py
through the configuration directive SHOP_ORDER_WORKFLOWS which takes a list of so called “Order Workflow
Mixin” classes. On bootstrapping the application and constructing the Order class, it additionally inherits from these
mixin classes. This gives the merchant an easy to configure, yet very powerful tool to model the selling process
of his e-commerce site according to his needs. Say, we want to accept bank transfer in advance, so we must add
’shop.payment.defaults.PayInAdvanceWorkflowMixin’ to our configuration setting. Additionally
we must assure that the checkout process has been configured to offer the corresponding cart modifier:

SHOP_CART_MODIFIERS = (
...
'shop.modifiers.defaults.PayInAdvanceModifier',

70 Chapter 4. Reference

https://gist.github.com/Nagyman/9502133


djangoSHOP, Release 0.9.1

...
)

This mixin class contains a few transition methods, lets for instance have a closer look onto

@transition(field='status', source=['created'], target='awaiting_payment')
def awaiting_payment(self):

"""Signals that an Order awaits payments."""

This method actually does nothing, beside changing the status from “created” to “awaiting_payment”. It is invoked by
the method get_payment_request() from ForwardFundPayment, which is the default payment provider
of the configured PayInAdvanceModifier cart modifier.

The class PayInAdvanceWorkflowMixin has two other transition methods worth mentioning:

@transition(field='status', source=['awaiting_payment'],
target='prepayment_deposited', conditions=[is_fully_paid],
custom=dict(admin=True, button_name=_("Mark as Paid")))

def prepayment_fully_deposited(self):
"""Signals that the current Order received a payment."""

This method can be invoked by the Django admin backend when saving an existing Order object, but only under the
condition that it is fully paid. The method is_fully_paid() iterates over all payments associated with its Or-
der object, sums them up and compares them against the total. If the entered payment equals or exceeds the order’s
total, this method returns True and the condition for the given transition is met. This then adds a button labeled
“Mark as Paid” at the bottom of the admin view. Whenever the merchant clicks on this button, the above method
prepayment_fully_deposited is invoked. This then changes the order’s status from “awaiting_payment” to
“prepayment_deposited”. The Notifications of djangoSHOP can intercept this transition change and perform precon-
figured action, such as sending a payment confirmation email to the customer.

Now that the order has been paid, it time to fulfill it. For this a merchant can use the workflow mixin class
shop.shipping.defaults.CommissionGoodsWorkflowMixin, which gives him a hand to keep track on
the fulfillment of each order. Since this class doesn’t know anything about an order status of “prepayment_deposited”
(this is a private definition of the class PayInAdvanceWorkflowMixin), djangoSHOP provides a status to mark
the payment of an order as confirmed. Therefore another transition is added to our mixin class, which is invoked
automatically by the framework whenever the status changes to “prepayment_deposited”:

@transition(field='status', source=['prepayment_deposited',
'no_payment_required'], custom=dict(auto=True))

def acknowledge_prepayment(self):
"""Acknowledge the payment."""
self.acknowledge_payment()

This status, “payment_confirmed”, is known by all other workflow mixin classes and must be used as the source
argument for their transition methods.

For further details on Finite State Machine transitions, please refer to the FSM docs. This however does not cover
the contents of dictionary custom. One of the attributes in custom is button="Any Label" as explained
in the FSM admin docs. The other is auto=True and has been introduced by djangoSHOP itself. It is used to
automatically proceed from one target to another one, without manual intervention, such as clicking onto a button.

Signals

Each state transition emits a signal before and after performing the status change. These signals, pre_transition
and post_transition can be received by any registered signal handler. In djangoSHOP, the notification frame-
work listens for these events and creates appropriate notification e-mails, if configured.

4.10. Order 71

https://github.com/kmmbvnr/django-fsm
https://github.com/gadventures/django-fsm-admin
https://docs.djangoproject.com/en/stable/topics/signals/


djangoSHOP, Release 0.9.1

But sometimes simple notifications are not enough, and the merchant’s implementation must perform actions in a
programmatic way. This for instance could be a query, which shall be sent to the goods management database,
whenever a payment has been confirmed successfully.

In Django, we typically register signal handlers in the ready method of the merchant’s application configuration:

Listing 4.8: myshop/apps.py

from django.apps import AppConfig

class MyShopConfig(AppConfig):
name = 'my_shop'

def ready(self):
from django_fsm.signals import post_transition
post_transition.connect(order_event_notification)

def order_event_notification(sender, instance=None, target=None, **kwargs):
if target == 'payment_confirmed':

# do whatever appropriate

In the above order event notification, use instance to access the corresponding Order object.

Finite State Machine Diagram

If graphviz is installed on the operating system, it is pretty simple to render a graphical representation of the currently
configured Finite State Machine. Simply invoke:

./manage.py ./manage.py graph_transitions -o fsm-graph.png

Applied to our demo shop, this gives the following graph:

72 Chapter 4. Reference

https://docs.djangoproject.com/en/1.9/ref/applications/#application-configuration
http://www.graphviz.org/


djangoSHOP, Release 0.9.1

4.10.4 Order Admin

The order editor likely is the most heavily used for each shop installation. Here the merchant must manage all incoming
orders, payments, customer annotations, deliveries, etc. By automating common tasks, the backend shall prevent
careless mistakes. For instance, it should be impossible to ship unpaid goods or to cancel a delivered order.

Since the djangoSHOP framework does not know which class model is used to implement an Order, it intentionally
doesn’t register its prepared administration class for that model. This has to be done by the project implementing the
show. It allows to add additional fields and other mixin classes, before registration.

For instance, the admin class used to manage the Order model in our shop project, could be implemented as:

4.10. Order 73



djangoSHOP, Release 0.9.1

Listing 4.9: myshop/admin.py

from django.contrib import admin
from shop.models.order import OrderModel
from shop.admin.order import (PrintOrderAdminMixin,

BaseOrderAdmin, OrderPaymentInline, OrderItemInline)

@admin.register(OrderModel)
class OrderAdmin(PrintOrderAdminMixin, BaseOrderAdmin):

fields = BaseOrderAdmin.fields + (
('shipping_address_text', 'billing_address_text',),)

inlines = (OrderItemInline, OrderPaymentInline,)

The fields shipping_address_text and billing_address_text are not part of the abstract model class
BaseOrder and therefore must be referenced separately.

Another useful mixin class to be added to this admin backend is PrintOrderAdminMixin. Whenever the status of
an order is set to “Pick the Goods” a button labeled “Print Delivery Note” is added to the order admin form. Clicking
on that button displays one ore more pages optimized for printing.

On the other hand, when the status of an order is set to “Pack the Goods” a button labeled “Print Invoice” is added to
the order admin form.

The template for the invoice and delivery note can easily be adopted to the corporate design using plain HTML and
CSS.

4.11 Managing the Deliver Process

Depending on the merchant’s setup, an order can be considered as one inseparably unit, or if partial shipping shall be
allowed, as a collection of single products, which can be delivered individually.

To enable partial shipping, assure the instantiation of both classes shop.models.delivery.BaseDelivery
and shop.models.delivery.BaseDeliveryItem. The easiest way to do this is to import the materialized
classes into an existing model class:

from shop.models.defaults.delivery import Delivery, DeliveryItem

4.11.1 Partial Delivery Workflow

The class implementing the Order, requires additional methods provided by the mixin class
shop.shipping.delivery.PartialDeliveryWorkflowMixin. Mix this class into the Order
class by configuring

SHOP_ORDER_WORKFLOWS = (
# other workflow mixins
'shop.shipping.defaults.PartialDeliveryWorkflowMixin',

)

Note: Do not combine this mixin with the class CommissionGoodsWorkflowMixin.

74 Chapter 4. Reference



djangoSHOP, Release 0.9.1

4.11.2 Administration Backend

To control partial delivery, add the class shop.admin.delivery.DeliveryOrderAdminMixin to the amin
class class implementing an Order:

Listing 4.10: myshop/admin/order.py

from django.contrib import admin
from shop.admin.order import BaseOrderAdmin
from shop.models.defaults.order import Order
from shop.admin.delivery import DeliveryOrderAdminMixin

@admin.register(Order)
class OrderAdmin(DeliveryOrderAdminMixin, BaseOrderAdmin):

pass

4.11.3 Implementation Details

When partial delivery is activated, two additional tables are added to the database, one for each delivery and one for
each delivered order item. This allows us to split up the quantity of in ordered item into two or more delivery objects.
This can be useful, if a product is sold out, but the merchant wants to ship whatever is available on stock. He then
creates a delivery object and assigns the available quantity to each linked delivery item.

If a product is not available at all anymore, the merchant can alternatively cancel that order item.

4.12 Designing an Address Model

Depending on the merchant’s needs, the business model and the catchment area of the site, the used address models
may vary widely. Since djangoSHOP allows to subclass almost every database model, addresses are no exception
here. The class shop.models.address.BaseAddress only contains a foreign key to the Customer model and
a priority field used to sort multiple addresses by relevance.

All the fields which make up an address, such as the addresse, the street, zip code, etc. are part of the concrete model
implementing an address. It is the merchant’s responsibility to define which address fields are required for his needs.
Therefore the base address model does not contain any address related fields, they instead have to be declared by the
merchant. A concrete implementation of the shipping address model may look like this:

..code-block:: python

from shop.models.address import BaseShippingAddress, ISO_3166_CODES

class ShippingAddress(BaseShippingAddress):

class Meta: verbose_name = “Shipping Address” verbose_name_plural = “Shipping Addresses”

addressee = models.CharField(“Addressee”, max_length=50) street = models.CharField(“Street”,
max_length=50) zip_code = models.CharField(“ZIP”, max_length=10) location = mod-
els.CharField(“Location”, max_length=50) country = models.CharField(“Country”, max_length=3,

choices=ISO_3166_CODES)

Since the billing address may contain different fields, it must be defined separately from the shipping address. To
avoid the duplicate definition of common fields for both models, use a mixin class such as:

..code-block:: python

from django.db import models from shop.models.address import BaseBillingAddress

4.12. Designing an Address Model 75



djangoSHOP, Release 0.9.1

class AddressModelMixin(models.Model): addressee = models.CharField(_(“Addressee”),
max_length=50) # other fields

class Meta: abstract = True

class BillingAddress(BaseBillingAddress, AddressModelMixin): tax_number = mod-
els.CharField(“Tax number”, max_length=50)

class Meta: verbose_name = “Billing Address” verbose_name_plural = “Billing Addresses”

4.12.1 Multiple Addresses

In djangoSHOP, if the merchant activates this feature, while setting up the site, customers can register more than
one address. Multiple addresses can be activated, when editing the Shipping Address Form Plugin or the Billing
Address Form Plugin.

Then during checkout, the customer can select one of a previously entered shipping- and billing addresses, or if he
desires add a new one to his list of existing addresses.

4.12.2 How Addresses are used

Each active Cart object refers to one shipping address object and optionally one billing address object. This means
that the customer can change those addresses whenever he uses the supplied address forms.

However, when the customer purchases the content of the cart, that address object is converted into a simple text string
and stored inside the newly created Order object. This is to freeze the actual wording of the entered address. It also
assures that the address used for delivery and printed on the invoice is immune against accidental changes after the
purchasing operation.

4.12.3 Use Shipping Address for Billing

Most customers use their shipping address for billing. Therefore, unless you have really special needs, it is suggested
to share all address fields required for shipping, also with the billing address. The customer then can reuse the shipping
address for billing, if he desires to. Technically, if the billing address is unset, the shipping address is used anyway,
but in djangoSHOP the merchant has to actively give permission to his customers, to reuse this address for billing.

The merchant has to actively allow this setting on the site, while editing the Billing Address Form Plugin.

4.12.4 Address Formatting

Whenever the customer fulfills the purchase operation, the corresponding shipping- and billing address objects are
rendered into a short paragraph of plain text, separated by the newline character. This formatted address then is used
to print address labels for parcel delivery and printed invoices.

It is the merchant’s responsibility to format these addresses according to the local practice. A customized
address template must be added into the merchant’s implementation below the templates folder named
myshop/shipping_address.txt or myshop/billing_address.txt. If both address models share the
same fields, we may also use myshop/address.txt as a fallback. Such an address template may look like:

Listing 4.11: myshop/address.txt

76 Chapter 4. Reference



djangoSHOP, Release 0.9.1

{{ address.addressee }}{% if address.supplement %}
{{ address.supplement }}{% endif %}
{{ address.street }}
{{ address.zip_code }} {{ address.location }}
{{ address.get_country_display }}

This template is used by the method as_text() as found in each address model.

4.12.5 Address Forms

The address form, where customers can insert their address, is generated automatically and in a DRY manner. This
means that whenever a field is added, modified or removed from the address model, the corresponding fields in the
address input form, reflect those changes without manual intervention. When creating the form template, we have to
write it using the as_div() method. This method also adds automatic client-side form validation to the correspond-
ing HTML code.

Address Form Styling

One problem which remains with automatic form generation, is how to style the input fields. Therefore, djangoSHOP
wraps every input field into a <div>-element using a CSS class named according to the field. This for instance is
useful to shorten some input fields and/or place it onto the same line.

Say, any of our address forms contain the fields zip_code and location as shown in the example above. Then
they may be styled as

.shop-address-zip_code {
width: 35%;
display: inline-block;

}

.shop-address-location {
width: 65%;
display: inline-block;
margin-left: -4px;
padding-left: 15px;

}

so that the ZIP field is narrower and precedes the location field on the same line.

4.13 Full Text Search

How should a customer find the product he desires in a more or less unstructured collection of countless products.
Hierarchical navigation often doesn’t work and takes too much time. Thanks to the way we use the Internet today,
most site visitors expect one central search field in the main navigation bar of a site.

4.13.1 Search Engine API

In Django the most popular API for full-text search is Haystack. While other indexing backends, such as Solr and
Whoosh might work as well, the best results have been achieved with Elasticsearch. Therefore this documentation
focuses exclusively on Elasticsearch. And since in djangoSHOP every programming interface uses REST, search is
no exception here. Fortunately there is a project named drf-haystack, which “restifies” our search results, if use use
special serializers.

4.13. Full Text Search 77

http://haystacksearch.org/
https://www.elastic.co/
https://pypi.python.org/pypi/drf-haystack


djangoSHOP, Release 0.9.1

In this document we assume that the merchant only wants to index his products, but not any arbitrary content, such as
for example the terms and condition, as found outside djangoSHOP, but inside djangoCMS.

Configuration

Install the Elasticsearch binary. Currently Haystack only supports versions smaller than 2. Then start the service in
daemon mode:

./path/to/elasticsearch-version/bin/elasticsearch -d

Check if the server answers on HTTP requests. Pointing a browser onto port http://localhost:9200/ should return
something similar to this:

$ curl http://localhost:9200/
{

"status" : 200,
"name" : "Ape-X",
"cluster_name" : "elasticsearch",
"version" : {
...

},
}

In settings.py, check that ’haystack’ has been added to INSTALLED_APPS and connects the application
server with the Elasticsearch database:

HAYSTACK_CONNECTIONS = {
'default': {

'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine',
'URL': 'http://localhost:9200/',
'INDEX_NAME': 'myshop-default',

},
}

In case we need indices for different natural languages on our site, we shall add the non-default languages to this
Python dictionary using a different INDEX_NAME for each of them.

Finally configure the site, so that search queries are routed to the correct index using the currently active natural
language:

HAYSTACK_ROUTERS = ('shop.search.routers.LanguageRouter',)

4.13.2 Indexing the Products

Before we start to search for something, we first must populate its indices. In Haystack one can create more than one
kind of index for each item being added to the search database.

Each product type requires its individual indexing class. Note that Haystack does some autodiscovery, therefore this
class must be added to a file named search_indexex.py. For our product model SmartCard, this indexing
class then may look like:

Listing 4.12: myshop/search_indexes.py

from shop.search.indexes import ProductIndex
from haystack import indexes

class SmartCardIndex(ProductIndex, indexes.Indexable):

78 Chapter 4. Reference

http://localhost:9200/


djangoSHOP, Release 0.9.1

catalog_media = indexes.CharField(stored=True,
indexed=False, null=True)

search_media = indexes.CharField(stored=True,
indexed=False, null=True)

def get_model(self):
return SmartCard

# more methods ...

While building the index, Haystack performs some preparatory steps:

Populate the reverse index database

The base class for our search index declares two fields for holding the reverse indexes and a few additional fields to
store information about the indexed product entity:

Listing 4.13: shop/indexes.py

class ProductIndex(indexes.SearchIndex):
text = indexes.CharField(document=True,

indexed=True, use_template=True)
autocomplete = indexes.EdgeNgramField(indexed=True,

use_template=True)

product_name = indexes.CharField(stored=True,
indexed=False, model_attr='product_name')

product_url = indexes.CharField(stored=True,
indexed=False, model_attr='get_absolute_url')

The first two index fields require a template which renders plain text, which is used to build a reverse in-
dex in the search database. The indexes.CharField is used for a classic reverse text index, whereas the
indexes.EdgeNgramField is used for autocompletion.

Each of these index fields require their own template. They must be named according to the following rules:

search/indexes/myshop/<product-type>_text.txt

and

search/indexes/myshop/<product-type>_autocomplete.txt

and be located inside the project’s template folder. The <product-type> is the classname in lowercase of the given
product model. Create two individual templates for each product type, one for text search and one for autocompletion.

An example:

Listing 4.14: search/indexes/smartcard_text.txt

{{ object.product_name }}
{{ object.product_code }}
{{ object.manufacturer }}
{{ object.description|striptags }}
{% for page in object.cms_pages.all %}
{{ page.get_title }}{% endfor %}

4.13. Full Text Search 79

http://django-haystack.readthedocs.org/en/latest/searchfield_api.html
http://django-haystack.readthedocs.org/en/latest/autocomplete.html?highlight=autocompletion


djangoSHOP, Release 0.9.1

The last two fields are used to store information about the product’s content, side by side with the indexed entities.
That’s a huge performance booster, since this information otherwise would have to be fetched from the relational
database, item by item, and then being rendered while preparing the search query result.

We can also add fields to our index class, which stores pre-rendered HTML. In the above example, this is done by
the fields catalog_media and search_media. Since we do not provide a model attribute, we must provide two
methods, which creates this content:

Listing 4.15: myshop/search_indexes.py

class SmartCardIndex(ProductIndex, indexes.Indexable):
# other fields and methods ...

def prepare_catalog_media(self, product):
return self.render_html('catalog', product, 'media')

def prepare_search_media(self, product):
return self.render_html('search', product, 'media')

These methods themselves invoke render_html which takes the product and renders it using a templates named
catalog-product-media.html or search-product-media.html respectively. These templates are
looked for in the folder myshop/products or, if not found there in the folder shop/products. The HTML
snippets for catalog-media are used for autocompletion search, whereas search-media is used for normal a normal
full-text search invocation.

Building the Index

To build the index in Elasticsearch, invoke:

./manage.py rebuild_index --noinput

Depending on the number of products in the database, this may take some time.

4.13.3 Search Serializers

Haystack for Django REST Framework is a small library aiming to simplify using Haystack with Django REST
Framework. It takes the search results returned by Haystack, treating them the similar to Django database models
when serializing their fields. The serializer used to render the content for this demo site, may look like:

Listing 4.16: myshop/serializers.py

from rest_framework import serializers
from shop.search.serializers import ProductSearchSerializer as ProductSearchSerializerBase
from .search_indexes import SmartCardIndex, SmartPhoneIndex

class ProductSearchSerializer(ProductSearchSerializerBase):
media = serializers.SerializerMethodField()

class Meta(ProductSearchSerializerBase.Meta):
fields = ProductSearchSerializerBase.Meta.fields + ('media',)
index_classes = (SmartCardIndex, SmartPhoneIndex)

def get_media(self, search_result):
return search_result.search_media

80 Chapter 4. Reference

https://drf-haystack.readthedocs.org/en/latest/


djangoSHOP, Release 0.9.1

This serializer is part of the project, since we must adopt it to whatever content we want to display on our site, whenever
a visitor enters some text into the search field.

4.13.4 Search View

In the Search View we link the serializer together with a djangoCMS apphook. This ProductSearchApp can be
added to the same file, we already used to declare the ProductsListApp used to render the catalog view:

Listing 4.17: myshop/cms_app.py

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

class ProductSearchApp(CMSApp):
name = _("Search")
urls = ['myshop.urls.search']

apphook_pool.register(ProductSearchApp)

as all apphooks, it requires a file defining its urlpatterns:

Listing 4.18: myshop/urls/search.py

from django.conf.urls import patterns, url
from shop.search.views import SearchView
from myshop.serializers import ProductSearchSerializer

urlpatterns = patterns('',
url(r'^', SearchView.as_view(

serializer_class=ProductSearchSerializer,
)),

)

Search Results

As with all other pages in djangoSHOP, the page displaying our search results is a normal CMS page too. It is
suggested to create this page on the root level of the page tree.

As the page title use “Search” or whatever is appropriate in our natural language. Then we change into advanced
setting.

As a template use one with a big placeholder, since it must display our search results.

In the page Id field, use “shop-search-product”. Some prepared default templates use this hard coded string.

Set the input field Soft root to checked. This hides this special page from our menu list.

As Application, select “Search”. This selects the apphook we created in the previous section.

Then save the page, change into Structure mode and locate the Main Content Container. Add a container with a Row
and Column. As the child of this column chose the Search Results plugin from section Shop.

Finally publish the page and enter some text into the search field. It should render a list of found products.

4.13. Full Text Search 81

http://docs.django-cms.org/en/stable/how_to/apphooks.html


djangoSHOP, Release 0.9.1

4.13.5 Autocompletion in Catalog List View

As we have seen in the previous example, the Product Search View is suitable to search for any item in the product
database. However, the site visitor sometimes might just refine the list of items shown in the catalog’s list view. Here
loading a new page which uses a completely different layout, may by inappropriate.

Instead, when someone enters some text into the search field, djangoSHOP starts to narrow down the list of items in
the Catalog List View by typing query terms into the search field. This is specially useful in situations where hundreds
of products are displayed together on the same page and the customer needs to pick out the correct one by entering
some search terms.

To extend the existing Catalog List View for autocompletion, locate the file containing the urlpatterns, which are used
by the apphook ProductsListApp. In doubt, consult the file myshop/cms_app.py.

Into these urlpatterns add the following entry:

from django.conf.urls import patterns, url
from shop.search.views import SearchView
from myshop.serializers import CatalogSearchSerializer

urlpatterns = patterns('',
# previous patterns
url(r'^search-catalog$', SearchView.as_view(

serializer_class=CatalogSearchSerializer,
)),

82 Chapter 4. Reference



djangoSHOP, Release 0.9.1

# other patterns
)

Note: Be careful the the regular expression for ^search-catalog$ matches before the product’s detail view,
which usually is looks for patterns matching ^(?P<slug>[\w-]+)$.

The CatalogSearchSerializer used here is very similar to the ProductSearchSerializer we have
seen in the previous section. The only difference is, that instead of the search_media field is uses the
catalog_media field, which renders the result items media in a layout appropriate for the catalog’s list view.

4.14 Notifications

Whenever the status in model Order changes, the built-in Finite State Machine emits a signal using Django’s signal-
ing framework. These signals are received by djangoSHOP‘s Notification Framework.

4.14.1 Notification Admin

In Django’s admin backend on Start > Shop > Notification, the merchant can configure which email to send to whom,
depending on each of the emitted events. When adding or editing a notification, we get a form mask with four input
fields:

Notification Identifier

An arbitrary name used to distinguish the different notifications. Its up to the merchant to chose a meaningful name,
“Order confirmed, paid with PayPal” could for instance be a good choice.

Event Type

Each Order Workflows declares a set of transition targets. For instance, the class PayInAdvanceWorkflowMixin
declares these targets: “Awaiting a forward fund payment”, “Prepayment deposited” and “No Payment Required”.

The merchant can attach a notification for each of these transition targets. Here he must chose one from the prepared
collection.

The Recipient

Transitions events are transmitted for changes in the order status. Each order belongs to one customer, and normally
he’s the first one to be informed, if something changes.

But other persons in the context of this e-commerce site might also be interested into a notification. In djangoSHOP
all staff Users qualify, as it is assumed that they belong to the group eligible to manage the site.

Email Templates

From the section Start > Post Office > Email Templates, chose on of the Templates for Emails.

4.14. Notifications 83

https://docs.djangoproject.com/en/stable/topics/signals/
https://docs.djangoproject.com/en/stable/topics/signals/


djangoSHOP, Release 0.9.1

Notification attachments

Chose none, one or more static files to be attached to each email. This typically is a PDF with the terms and conditions.
We normally want to send them only to our customers, but not to the staff users, otherwise we’d fill up their mail inbox
with countless attachments.

4.14.2 Post Office

Emails for order confirmations are send asynchronously by djangoSHOP. The reason for this is that it sometimes
takes a few seconds for an application server to connect via SMTP, and deliver an Email. It is unacceptable to do this
synchronously during the most sensitive phase of a purchase operation.

Therefore djangoSHOP sends all generated emails using the queuing mail system Post Office. This app can hold a
set of different email templates, which use the same template language as Django itself. Emails can be rendered using
plain text, HTML or both.

When emails are queued, the chosen template object is stored side by side with its context serialized as JSON. These
queued emails are accessible in Django’s admin backend at Start > Post Office > Emails. Their status can either be
“queued”, “sent” or “failed”.

As an offline operation, ./manage.py send_queued_mail renders and sends queued emails to the given recip-
ient. During this step, the given template is rendered applying the stored context. Their status then changes to “sent”,
or in case of a problem to “failed”.

If djangoSHOP is configured to run in a multilingual environment, post office renders the email in the language used
during order creation.

Templates for Emails

The Message fields can contain any code, which is valid for Django templates. Frequently, a summary of the order
is rendered in these emails, creating a list of ordered items. This list often is common across all email templates, and
therefore it is recommended to prepare it in a base template for being reused. In the merchants project folder, create
those base email templates inside the folder templates/myshop/email/.... Then inside the Message fields,
these templates can be loaded and expanded using the well known templatetag

{% extends "myshop/email/somebase.html" %}

Caveats when using an HTML Message

Displaying HTML in email clients is a pain. Nobody really can say, which HTML tags are allowed in which client –
and there are many email readers out there, far more than Internet browsers.

Therefore when designing HTML templates for emails, one must be really, really conservative. It may seem anachro-
nistic, but still a best practice is to use the <table> element, and if necessary, nest it into their <td> (tables data)
elements. Moreover, use inline styles rather than a <style> element containing blocks of CSS. It is recommended
to use a special email framework to avoid nasty quirks, when rendering the templates.

Images can be embedded into HTML emails using two different methods. One is to host the image on the web-server
and to build an absolute URI referring it. Therefore djangoSHOP enriches the object RenderContext with the
base URI for that web-site and stores it as context variable named ABSOLUTE_BASE_URI. For privacy reasons, most
email clients do not load externally hosted images by default – the customer then must actively request to load them
from the external sources.

Another method for adding images to HTML emails is to inline their payload. This means that images, instead
of referring them by URI, are inlined as a base64-encoded string. Easy-thumbnails offers a template filter named

84 Chapter 4. Reference

https://github.com/ui/django-post_office
http://emailframe.work/
http://easy-thumbnails.readthedocs.org/en/latest/usage/#easy_thumbnails.templatetags.thumbnail.data_uri


djangoSHOP, Release 0.9.1

data_uri to perform this operation. This of course blows up the overall size of an email and shall only be used for
small an medium sized images.

4.15 REST Serializers

God application programming style is to strictly separate of Models, Views and Controllers. In typical classic Django
jargon, Views act as, what outsiders normally would denote a controller.

Controllers can sometimes be found on the server and sometimes on the client. In djangoSHOP a significant portion
of the controller code is written in JavaScript in the form of Angular directives.

Therefore, all data exchange between the View and the Model must be performed in a serializable format, namely
JSON. This allows us to use the same business logic for the server, as well as for the client. It also means, that we
could create native mobile apps, which communicate with a web-application, without ever seeing a line of HTML
code.

4.15.1 Every URL is a REST endpoint

Every URL which is part of part of djangoSHOP, namely the product’s list and detail views, the cart and checkout
views, the order list and detail views, they all are REST endpoints. What does that mean?

Catalog List View

Say, we are working with the provided demo shop, then the product’s list view is available at
http://localhost:8000/de/shop/ . By appending ?format=json to the URL, the raw data making up our product
list, is rendered as a JSON object. For humans, this is difficult to read, therefore the Django Restframework offers a
version which is more legible: Instead of the above, we invoke the URL as http://localhost:8000/de/shop/?format=api
. This renders the list of products as:

4.15. REST Serializers 85

https://docs.angularjs.org/guide/directive
http://localhost:8000/de/shop/
http://localhost:8000/de/shop/?format=api


djangoSHOP, Release 0.9.1

Catalog Detail View

By following a URL of a product’s detail view, say http://localhost:8000/de/shop/smart-phones/apple-iphone-
5?format=api , one may check the legible representation such as:

86 Chapter 4. Reference

http://localhost:8000/de/shop/smart-phones/apple-iphone-5?format=api
http://localhost:8000/de/shop/smart-phones/apple-iphone-5?format=api


djangoSHOP, Release 0.9.1

Routing to these endpoints

Since we are using CMS pages to display the catalog’s list view, we must provide an apphook to attach it to this page.
These catalog apphooks are not part of the shop framework, but must be created and added to the project:

4.15. REST Serializers 87

http://django-cms.readthedocs.org/en/stable/introduction/apphooks.html


djangoSHOP, Release 0.9.1

Listing 4.19: myshop/cms_app.py

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool

class CatalogListApp(CMSApp):
name = "Catalog List"
urls = ['myshop.urls.catalog']

apphook_pool.register(CatalogListApp)

We now must add routes for all sub-URLs of the given CMS page implementing the catalog list:

Listing 4.20: myshop/urls/catalog.py

from django.conf.urls import patterns, url
from rest_framework.settings import api_settings
from shop.rest.filters import CMSPagesFilterBackend
from shop.views.catalog import (AddToCartView, CMSPageProductListView,

ProductRetrieveView)
from myshop.serializers import (ProductSummarySerializer,

ProductDetailSerializer)

urlpatterns = patterns('',
url(r'^$', CMSPageProductListView.as_view(

serializer_class=ProductSummarySerializer,
)),
url(r'^(?P<slug>[\w-]+)$', ProductRetrieveView.as_view(

serializer_class=ProductDetailSerializer,
)),
url(r'^(?P<slug>[\w-]+)/add-to-cart', AddToCartView.as_view()
),

)

Products List View

The urlpattern matching the regular expression ^$ routes onto the catalog list view class
shop.views.catalog.CMSPageProductListView passing in a special serializer class, for example
myshop.serializers.ProductSummarySerializer. This has been customized to represent our product
models in our catalog templates. Since the serialized data now is available as a Python dictionary or as a plain
Javascript object, these templates then can be rendered by the Django template engine, as well as by the client using
for instance AngularJS.

This View class, which inherits from rest_framework.generics.ListAPIView accepts a list of filters for
restricting the list of items.

As we (ab)use CMS pages as categories, we somehow must assign them to our products. Therefore our example
project assigns a many-to-many field named cms_pages to our Product model. Using this field, the merchant can
assign each product to one or more CMS pages, using the apphook Products List.

This special filter_backend, shop.rest.filters.CMSPagesFilterBackend, is responsible for re-
stricting selected products on the current catalog list view.

88 Chapter 4. Reference



djangoSHOP, Release 0.9.1

Product Detail View

The urlpattern matching the regular expression ^(?P<slug>[\w-]+)$ routes onto the
class shop.views.catalog.ProductRetrieveView passing in a special serializer class,
myshop.serializers.ProductDetailSerializer which has been customized to represent our product
model details.

This View class inherits from rest_framework.generics.RetrieveAPIView. In addition to the given
serializer_class it can accept these fields:

• lookup_field: Model field to look up for the retrieved product. This defaults to slug.

• lookup_url_kwarg: URL argument as used by the matching RegEx. This defaults to slug.

• product_model: Restrict to products of this type. Defaults to ProductModel.

Add Product to Cart

The product detail view requires another serializer, the so called AddToCartSerializer. This serializer is respon-
sible for controlling the number of items being added to the cart and gives feedback on the subtotal of that potential
cart item.

By appending the special string add-to-cart to the URL of a product’s detail view, say
http://localhost:8000/de/shop/smart-phones/apple-iphone-5/add-to-cart?format=api , one may check the legible
representation of this serializer:

4.15. REST Serializers 89

http://localhost:8000/de/shop/smart-phones/apple-iphone-5/add-to-cart?format=api


djangoSHOP, Release 0.9.1

This serializer is slightly different than the previous ones, because it not only serializes data and sends it from the
server to the client, but it also deserializes data submitted from the client back to the server using a post-request.
This normally is the quantity, but in more elaborated use cases, it also could contain attributes to distinguish product
variations. The AddSmartPhoneToCartSerializer for example, uses this pattern.

Since we may create our own Add this Product to Cart Serializer for each product type in our shop, hence overriding
its functionality with a customized implementation, such a serializer may return any other information relevant to the
customer. This could for instance be a rebate or just an update of the availability.

Cart and Checkout Views

CMS pages containing forms to edit the cart and the checkout views, do not require any URL routing, because their
HTML is rendered by the CMS plugin system, whereas form submissions are handled by hard coded REST endpoints.
These URLs are exclusively used by Ajax requests and never visible in the URL line of our browser. Those endpoints
are configured by adding them to the root resolver at a project level:

90 Chapter 4. Reference



djangoSHOP, Release 0.9.1

Listing 4.21: myshop/urls.py

urlpatterns = patterns('',
...
url(r'^shop/', include('shop.urls', namespace='shop')),
...

)

The serializers of the cart then can be accessed at http://localhost:8000/shop/api/cart/ , those of the
watch-list at http://localhost:8000/shop/api/watch/ and those handling the various checkout forms at
http://localhost:8000/shop/api/checkout/ . Accessing these URLs can be useful, specially when debugging
JavaScript code.

Order List and Detail Views

The Order List and Detail Views must be accessible through a CMS page, therefore we need a speaking URL. This is
similar to the Catalog List View. This means that the Order Views require the apphook named “View Orders”, which
must be configured in the advanced settings of the Order’s CMS pages. This apphook is shipped with djangoSHOP
itself and can be found at shop/cms_app.py.

As with all other Views used by djangoSHOP, the content of this View can also be rendered in its dictionary structure,
instead of HTML. Just append ?format=api to the URL and get the Order details. In our myshop example this
may look like:

4.15. REST Serializers 91

http://localhost:8000/shop/api/cart/
http://localhost:8000/shop/api/watch/
http://localhost:8000/shop/api/checkout/
http://django-cms.readthedocs.org/en/stable/introduction/apphooks.html


djangoSHOP, Release 0.9.1

Search Result Views

As with the Order View, also the Search Results View is accessible through a CMS page. Say, a search query di-
rected us to http://localhost:8000/en/search/?q=iphone , then the content of this query can be made visible by adding
&format=api to this URL and get the results in its dictionary structure. This is specially useful to test if a cus-
tomized search serializer returns the expected results. In our myshop example this may look like:

92 Chapter 4. Reference

http://localhost:8000/en/search/?q=iphone


djangoSHOP, Release 0.9.1

4.15.2 Final Note

In previous versions of djangoSHOP, these kinds of controller implementations had to be implemented by customized
Django View classes. This programming pattern led to bloated code, because the programmer had to do a case
distinction, whether the request was of type GET, POST or some kind of Ajax. Now djangoSHOP is shipped with
reusable View classes, and the merchant’s implementation must focus exclusively on serializers. This is much easier,
because it separates the business logic from the underlying request-response-cycle.

4.15. REST Serializers 93



djangoSHOP, Release 0.9.1

94 Chapter 4. Reference



CHAPTER 5

How To’s

Some recipes on how to perform certain tasks in djangoSHOP.

This collection of recipes unfortunately is not finished yet.

5.1 Add Customized HTML Snippets

When working in Structure Mode as provided by djangoCMS, while editing the DOM tree inside a placeholder, we
might want to add a HTML snippet which is not part of the Cascade ecosystem. Instead of creating an additional
Django template, it often is much easier to just add a customized plugin. This plugin then is available when editing a
placeholder in Structure Mode.

5.1.1 Customized Cascade plugin

Creating a customized plugin for the merchant’s implementaion of that e-commerce project is very easy. Just add this
small Python module:

Listing 5.1: myshop/cascade.py

from cms.plugin_pool import plugin_pool
from shop.cascade.plugin_base import ShopPluginBase

class MySnippetPlugin(ShopPluginBase):
name = "My Snippet"
render_template = 'myshop/cascade/my-snippet.html'

plugin_pool.register_plugin(MySnippetPlugin)

then, in the project’s settings.py register that plugin together with all other Cascade plugins:

CMSPLUGIN_CASCADE_PLUGINS = (
'cmsplugin_cascade.segmentation',
'cmsplugin_cascade.generic',
'cmsplugin_cascade.link',
'shop.cascade',
'cmsplugin_cascade.bootstrap3',
'myshop.cascade',
...

)

95



djangoSHOP, Release 0.9.1

The template itself myshop/cascade/my-snippet.html can contain all templatetags as configured within the
Django project.

Often we want to associate customized styles and/or scripts to work with our new template. Since we honor the
principle of encapsulation, we somehow must refer to these files in a generic way. This is where django-sekizai helps
us:

Listing 5.2: myshop/cascade/my-snippet.html

{% load static sekizai_tags %}

{% addtoblock "css" %}<link href="{% static 'myshop/css/my-snippet.css' %}" rel="stylesheet" type="text/css" />{% endaddtoblock %}
{% addtoblock "js" %}<script src="{% static 'myshop/js/my-snippet.js' %}" type="text/javascript"></script>{% endaddtoblock %}

<div>
my snippet code goes here...

</div>

Note: The main rendering template requires a block such as {% render_block "css" %} and {%
render_block "js" %} which then displays the stylesheets and scripts inside the appropriate HTML elements.

Further customizing the plugin

Sometimes we require additional parameters which shall be customizable by the merchant, while editing the plugin.
For Cascade this can be achieved very easily. First think about what kind of data to store, and which form widgets are
appropriate for that kind of editor. Say we want to add a text field holding the snippets title, then change the change
the plugin code from above to:

class MySnippetPlugin(ShopPluginBase):
...
glossary_fields = (

PartialFormField('title',
widgets.TextInput(),
label=_("Title")

),
)

Inside the rendering template for that plugin, the newly added title can be accessed as:

<h1>{{ instance.glossary.title }}</h1>
<div>...

Cascade offers many more options than just these. For details please check its reference guide.

5.1.2 Creating a customized Form snippet

Sometimes we might need a dialog form, to store arbitrary information queried from the customer using a customized
form. Say we need to know, when to deliver the goods. This information will be stored inside the dictionary
Cart.extra and thus transferred automatically to Order.extra whenever the cart object is converted into an
order object.

Our form plugin now must inherit from shop.cascade.plugin_base.DialogFormPluginBase instead of
our ordinary shop plugin class:

96 Chapter 5. How To’s

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
http://django-sekizai.readthedocs.org/en/stable/
http://djangocms-cascade.readthedocs.org/en/stable/


djangoSHOP, Release 0.9.1

from cms.plugin_pool import plugin_pool
from shop.models.cart import CartModel
from shop.cascade.plugin_base import DialogFormPluginBase

class DeliveryDatePlugin(DialogFormPluginBase):
name = "Delivery Date"
form_class = 'myshop.forms.DeliveryDateForm'
render_template = 'myshop/checkout/delivery-date.html'

def get_form_data(self, context, instance, placeholder):
cart = CartModel.objects.get_from_request(context['request'])
initial = {'delivery_date': getattr(cart, 'extra', {}).get('delivery_date', '')}
return {'initial': initial}

DialogFormPluginBase.register_plugin(DeliveryDatePlugin)

here additionally we have to specify a form_class. This form class can inherit from
shop.forms.base.DialogForm or shop.forms.base.DialogModelForm. Its behavior is almost
identical to its Django’s counterparts:

Listing 5.3: myshop/forms.py

class DeliveryDateForm(DialogForm):
scope_prefix = 'data.delivery_date'

date = fields.DateField(label="Delivery date")

@classmethod
def form_factory(cls, request, data, cart):

delivery_date_form = cls(data=data)
if delivery_date_form.is_valid():

cart.extra.update(delivery_date_form.cleaned_data)
return delivery_date_form

The scope_prefix marks the JavaScript object below our AngularJS $scope. This must be an identifier which is
unique across all dialog forms building up our ecosystem of Cascade plugins.

The classmethod form_factory must, as its name implies, create a form object of the class it belongs to. As in
our example from above, we use this to update the cart’s extra dictionary, whenever the customer submitted a valid
delivery date.

The last piece is to put everything together using a form template such as:

Listing 5.4: templates/myshop/checkout/delivery-date.html

{% extends "shop/checkout/dialog-base.html" %}

{% block dialog_form %}
<form name="{{ delivery_date_form.form_name }}" novalidate>

{{ delivery_date_form.as_div }}
</form>
{% endblock %}

5.2 Handling Discounts

Generally, this is how you implement a “bulk rebate” module, for instance.

5.2. Handling Discounts 97



djangoSHOP, Release 0.9.1

5.3 Taxes

As a general rule, the unit price of a product, shall always contain the net price. When our products show up in the
catalog, their method get_price(request) is consulted by the framework. Its here where you add tax, depending
on the tax model to apply. See below.

5.3.1 Use Cart Modifiers to handle tax

American tax model

European tax model

5.3.2 Other considerations

Try to not reinvent the wheel: Other shop systems / frameworks will contain solutions to this problem. But also
ERP-Systems will contain solutions to this problem.

Maybe it is wise to have a look at projects like Tryton (http://tryton.org).

98 Chapter 5. How To’s

http://tryton.org


CHAPTER 6

Development and Community

6.1 Changelog for djangoSHOP

6.1.1 0.9.1

• Support for Python 3

• Support for Django-1.9

• Added abstract classes class:shop.models.delivery.BaseDelivery and class:shop.models.delivery.BaseDeliveryItem
for optional partial shipping.

6.1.2 0.9.0

• Separated class:shop.views.catalog.ProductListView into its base and the new class
class:shop.views.catalog.CMSPageProductListView which already has added it appropriate filters.

• Moved wsgi.py into upper folder.

• Prototype of shop.cascade.DialogFormPluginBase.get_form_data changed. It now accepts
context, instance and placeholder.

• Fixed: It was impossible to enter the credit card information for Stripe and then proceed to the next step. Using
Stripe was possible only on the last step. This restriction has gone.

• It now also is possible to display a summary of your order before proceeding to the final purchasing step.

• To be more Pythonic, class:shop.models.cart.CartModelManager raises a DoesNotExist exception instead
of None for visiting customers.

• Added method filter_from_request to class:shop.models.order.OrderManager.

• Fixed: OrderAdmin doesn’t ignores error if customer URL can’t be resolved.

• Fixed: Version checking of Django.

• Fixed: Fieldsets duplication in Product Admin.

• CartPlugin now can be child of ProcessStepPlugin and BootstrapPanelPlugin.

• Added ShopAddToCartPlugin.

• All Checkout Forms now can be rendered as editable or summary.

• All Dialog Forms now can declare a legend.

99



djangoSHOP, Release 0.9.1

• In DialogFormPlugin, method form_factory always returns a form class instead of an error dict if form
was invalid.

• Added method OrderManager.filter_from_request, which behaves analogous to
CartManager.get_from_request.

• Fixed lookups using MoneyField by adding method get_prep_value.

• Dropped support for South migrations.

• Fixed: In ProductIndex, translations now are always overridden.

• Added class SyncCatalogView which can be used to synchronize the cart with a catalog list view.

• Content of Checkout Forms is handled by a single transaction.

• All models such as Product, Order, OrderItem, Cart, CartItem can be overridden by the merchant’s implemen-
tation. However, we are using the deferred pattern, instead of configuration settings.

• Categories must be implemented as separate djangoSHOP addons. However for many implementations pages
form the djangoCMS can be used as catalog list views.

• The principle on how cart modifiers work, didn’t change. There more inversion of control now, in that sense,
that now the modifiers decide themselves, how to change the subtotal and final total.

• Existing Payment Providers can be integrated without much hassle.

6.1.3 Since version 0.2.1 a lot of things have changed. Here is a short summary:

• The API of djangoSHOP is accessible through a REST interface. This allows us to build MVC on top of that.

• Changed the two OneToOne relations from model Address to User, one was used for shipping, one for billing.
Now abstract BaseAddress refers to the User by a single ForeignKey giving the ability to link more than one
address to each user. Additionally each address has a priority field for shipping and invoices, so that the latest
used address is offered to the client.

• Replaced model shop.models.User by the configuration directive settings.AUTH_USER_MODEL, to be
compliant with Django documentation.

• The cart now is always stored inside the database; there is no more distinction between session based carts and
database carts. Carts for anonymous users are retrieved using the visitor’s session_key. Therefore we don’t need
a utility function such get_or_create_cart anymore. Everything is handled by the a new CartManager,
which retrieves or creates or cart based on the request session.

• If the quantity of a cart item drops to zero, this items is not automatically removed from the cart. There are
plenty of reasons, why it can make sense to have a quantity of zero.

• A WatchList (some say wish-list) has been added. This simply reuses the existing Cart model, where the item
quantity is zero.

• Currency and CurrencyField are replaced by Money and MoneyField. These types not only store the amount,
but also in which currency this amount is. This has many advantages:

– An amount is rendered with its currency symbol as a string. This also applies for JSON data-structures,
rendered by the REST framework.

– Money types of different currencies can not be added/substracted by accident. Normal installations woun’t
be affected, since each shop system must specify its default currency.

• Backend pools for Payment and Shipping have been removed. Instead, a Cart Modifier can inherit from
PaymentModifier or ShippingModifier. This allows to reuse the Cart Modifier Pool for these back-
ends and use the modifiers logic for adding extra rows to he carts total.

100 Chapter 6. Development and Community



djangoSHOP, Release 0.9.1

• The models OrderExtraRow and OrderItemExtraRow has been replaced by a JSONField extra_rows
in model OrderModel and OrderItemModel. OrderAnnotation now also is stored inside this extra
field.

• Renamed for convention with other Django application:

– date_created -> created_at

– last_updated -> updated_at

– ExtraOrderPriceField -> BaseOrderExtraRow

– ExtraOrderItemPriceField -> BaseItemExtraRow

6.1.4 Version 0.2.1

This is the last release on the old code base. It has been tagged as 0.2.1 and can be examined for historical reasons.
Bugs will not be fixed in this release.

6.1.5 Version 0.2.0

• models.FloatField are now automatically localized.

• Support for Django 1.2 and Django 1.3 dropped.

• Product model now has property can_be_added_to_cart which is checked before adding the product to
cart

• In cart_modifiers methods get_extra_cart_price_field and get_extra_cart_item_price_field
accepts the additional object request which can be used to calculate the price according to the state of a
session, the IP-address or whatever might be useful. Note for backwards compatibility: Until version 0.1.2,
instead of the request object, an empty Python dictionary named state was passed into the cart modifiers.
This state object could contain arbitrary data to exchange information between the cart modifiers. This
Python dict now is a temporary attribute of the request object named cart_modifier_state. Use it
instead of the state object.

• Cart modifiers can add an optional data field beside label and value for both, the ExtraOrderPriceField
and the ExtraOrderItemPriceField model. This extra data field can contain anything serializable as JSON.

6.1.6 Version 0.1.2

• cart_required and order_required decorators now accept a reversible url name instead and redirect to cart by
default

• Added setting SHOP_PRICE_FORMAT used in the priceformat filter

• Separation of Concern in OrderManager.create_from_cart: It now is easier to extend the Order class with cus-
tomized data.

• Added OrderConfirmView after the shipping backend views that can be easily extended to display a confirmation
page

• Added example payment backend to the example shop

• Added example OrderConfirmView to the example shop

• Unconfirmed orders are now deleted from the database automatically

• Refactored order status (requires data migration)

6.1. Changelog for djangoSHOP 101



djangoSHOP, Release 0.9.1

– removed PAYMENT and added CONFIRMING status

– assignment of statuses is now linear

– moved cart.empty() to the PaymentAPI

– orders now store the pk of the originating cart

• Checkout process works like this:

1. CartDetails

2. CheckoutSelectionView

– POST –> Order.objects.create_from_cart(cart) removes all orders originating from this cart
that have status < CONFIRMED(30)

– creates a new Order with status PROCESSING(10)

3. ShippingBackend

– self.finished() sets the status to CONFIRMING(20)

4. OrderConfirmView

– self.confirm_order() sets the status to CONFIRMED(30)

5. PaymentBackend

– self.confirm_payment() sets the status to COMPLETED(40)

– empties the related cart

6. ThankYouView

– does nothing!

6.1.7 Version 0.1.1

• Changed CurrencyField default decimal precision back to 2

6.1.8 Version 0.1.0

• Bumped the CurrencyField precision limitation to 30 max_digits and 10 decimal places, like it should have been
since the beginning.

• Made Backends internationalizable, as well as the BillingShippingForm thanks to the introduciton of a new
optional backend_verbose_name attribute to backends.

• Added order_required decorator to fix bug #84, which should be used on all payment and shipping views

• Added cart_required decorator that checks for a cart on the checkout view #172

• Added get_product_reference method to Product (for extensibility)

• Cart object is not saved to database if it is empty (#147)

• Before adding items to cart you now have to use get_or_create_cart with save=True

• Changed spelling mistakes in methods from payed to paid on the Order model and on the API. This is potentially
not backwards compatible in some border cases.

• Added a mixin class which helps to localize model fields of type DecimalField in Django admin view.

102 Chapter 6. Development and Community



djangoSHOP, Release 0.9.1

• Added this newly created mixin class to OrderAdmin, so that all price fields are handled with the correct local-
ization.

• Order status is now directly modified in the shop API

• CartItem URLs were too greedy, they now match less.

• In case a user has two carts, one bound to the session and one to the user, the one from the session will be used
(#169)

• Fixed circular import errors by moving base models to shop.models_bases and base managers to
shop.models_bases.managers

6.1.9 Version 0.0.13

(Version cleanup)

6.1.10 Version 0.0.12

• Updated translations

• Split urls.py into several sub-files for better readability, and put in a urls shubfolder.

• Made templates extend a common base template

• Using a dynamically generated form for the cart now to validate user input. This will break your cart.html
template. Please refer to the changes in cart.html shipped by the shop to see how you can update your own
template. Basically you need to iterate over a formset now instead of cart_items.

• Fixed a circular import problem when user overrode their own models

6.1.11 Version 0.0.11

• Performance improvement (update CartItems are now cached to avoid unnecessary db queries)

• Various bugfixes

6.1.12 Version 0.0.10

• New hooks were added to cart modifiers: pre_process_cart and post_process_cart.

• [API change] Cart modifiers cart item methods now recieve a state object, that allows them to pass information
between cart modifiers cheaply.

• The cart items are not automatically saved after process_cart_item anymore. This allows for cart modifiers that
change the cart’s content (also deleting).

• Changed the version definition mechanism. You can now: import shop; shop.__version__. Also, it now con-
forms to PEP 386

• [API Change] Changed the payment backend API to let get_finished_url and get_cancel_url return strings in-
stead of HttpResponse objects (this was confusing)

• Tests for the shop are now runnable from any project

• added URL to CartItemView.delete()

6.1. Changelog for djangoSHOP 103



djangoSHOP, Release 0.9.1

6.1.13 Version 0.0.9

• Changed the base class for Cart Modifiers. Methods are now expected to return a tuple, and not direectly append
it to the extra_price_fields. Computation of the total is not done using an intermediate “current_total” attribute.

• Added a SHOP_FORCE_LOGIN setting that restricts the checkout process to loged-in users.

6.1.14 Version 0.0.8

• Major change in the way injecting models for extensibility works: the base models are now abstract, and the shop
provides a set of default implementations that users can replace / override using the settings, as usual. A special
mechanism is required to make the Foreign keys to shop models work. This is explained in shop.utils.loaders

6.1.15 Version 0.0.7

• Fixed bug in the extensibility section of CartItem

• Added complete German translations

• Added verbose names to the Address model in order to have shipping and billing forms that has multilingual
labels.

6.1.16 Version 0.0.6

(Bugfix release)

• Various bugfixes

• Creating AddressModels for use with the checkout view (the default ones at least) were bugged, and would
spawn new instances on form post, instead of updating the user’s already existing ones.

• Removed redundant payment method field on the Order model.

• The “thank you” view does not crash anymore when it’s refreshed. It now displays the last order the user placed.

• Fixed a bug in the shippingbilling view where the returned form was a from class instead of a from instance.

6.1.17 Version 0.0.5

• Fix a bug in 0.0.4 that made South migration fail with Django < 1.3

6.1.18 Version 0.0.4

• Addresses are now stored as one single text field on the Order objects

• OrderItems now have a ForeignKey relation to Products (to retrieve the product more easily)

• New templatetag (“products”)

• Made most models swappable using settings (see docs)

• Changed checkout views. The shop uses one single checkout view by default now.

• Created new mechanism to use custom Address models (see docs)

• Moved all Address-related models to shop.addressmodel sub-app

104 Chapter 6. Development and Community



djangoSHOP, Release 0.9.1

• Removed Client Class

• Removed Product.long_description and Product.short_description from the Product superclass

• Bugfixes, docs update

6.1.19 Version 0.0.3

• More packaging fixes (missing templates, basically)

6.1.20 Version 0.0.2

• Packaging fix (added MANIFEST.in)

6.1.21 Version 0.0.1

• Initial release to Pypi

6.2 Contributing

6.2.1 Naming conventions

The official name of this project is djangoSHOP. Third party plugins for djangoSHOP shall follow the same naming
convention as for plugins of djangoCMS: Third party package names shall start with djangoshop followed by a dash;
no space shall be added between django and shop, for example: djangoshop-stripe

DjangoSHOP should be capitalised at the start of sentences and in title-case headings.

When referring to the package, repositories and any other things in which spaces are not permitted, use django-shop.

6.2.2 Running tests

It’s important to run tests before committing :)

Setting up the environment

We highly suggest you run the tests suite in a clean environment, using a tool such as virtualenv.

1. Clone the repository and cd into it:

git clone https://github.com/awesto/django-shop
cd django-shop

2. Create a virtualenv, and activate it:

virtualenv ~/.virtualenvs/django-shop
source ~/.virtualenvs/django-shop/bin/activate

3. Install the project in development mode:

pip install -e .

6.2. Contributing 105

http://pypi.python.org/pypi/virtualenv


djangoSHOP, Release 0.9.1

4. Install the development requirements:

pip install -r requirements/django18/testing.txt

That’s it! Now, you should be able to run the tests:

py.test tests

We use tox as a CI tool. To run the full CI test suite and get a coverage report, all you have to do is this:

pip install tox
tox

If you work on a certain part of the code base and you want to run the related tests, you may only want to run the tests
affecting that part. In such a case use py.test from your testing environment and specify the file to test, or for more
granularity the class name or even the method name. Here are two examples:

py.test testshop/test_money.py
py.test testshop/test_money.py -k test_pickle

Measuring which lines of code have been “seen” be the test runner is an important task while testing. Do this by
creating a coverage report, for example with:

coverage run $(which py.test) testshop
coverage report

or if you to test only a specific class

coverage run .tox/py27-django19/bin/py.test testshop/test_money.py coverage report -m shop/money/*.py

Note: Using tox and py.test is optional. If you prefer the conventional way of running tests, you can do this:
django-admin.py test tests --settings shop.testsettings

6.2.3 Community

Most of the discussion around django SHOP takes place on IRC (Internet Relay Chat), on the freenode servers in the
#django-shop channel.

We also have a mailing list and a google group:

http://groups.google.com/group/django-shop

6.2.4 Code guidelines

Unless otherwise specified, follow PEP 8 as closely as possible.

An exception to PEP 8 is our rules on line lengths. Don’t limit lines of code to 79 characters if it means the code looks
significantly uglier or is harder to read. Consider 100 characters as a soft, and 119 as a hard limit. Here soft limit
means, that unless a line must be splitted across two lines, it is more readable to stay with a long line.

Use the issue tracker only to report bugs. Send unsolicited pull requests only to fix bug – never to add new features.

Use stack-overflow to ask for questions related to djangoSHOP.

Most pull requests will be rejected without proper unit testing.

Before adding a new feature, please write a specification using the style for Django Enhancement Proposals.

106 Chapter 6. Development and Community

http://codespeak.net/tox/
https://www.python.org/dev/peps/pep-0008
https://github.com/django/deps/blob/master/final/0001-dep-process.rst


djangoSHOP, Release 0.9.1

More information about how to send a Pull Request can be found on GitHub: http://help.github.com/send-pull-
requests/

6.2. Contributing 107

http://help.github.com/send-pull-requests/
http://help.github.com/send-pull-requests/


djangoSHOP, Release 0.9.1

108 Chapter 6. Development and Community



CHAPTER 7

License

DjangoSHOP is licensed under the terms of the BSD license.

109



djangoSHOP, Release 0.9.1

110 Chapter 7. License



Index

A
add_extra_cart_item_row()

(shop.modifiers.base.BaseCartModifier
method), 64

add_extra_cart_row() (shop.modifiers.base.BaseCartModifier
method), 64

arrange_cart_items() (shop.modifiers.base.BaseCartModifier
method), 64

arrange_watch_items() (shop.modifiers.base.BaseCartModifier
method), 64

B
BaseCartModifier (class in shop.modifiers.base), 64

P
post_process_cart() (shop.modifiers.base.BaseCartModifier

method), 65
pre_process_cart() (shop.modifiers.base.BaseCartModifier

method), 65
pre_process_cart_item() (shop.modifiers.base.BaseCartModifier

method), 65
process_cart() (shop.modifiers.base.BaseCartModifier

method), 65
process_cart_item() (shop.modifiers.base.BaseCartModifier

method), 65
Python Enhancement Proposals

PEP 8, 106

111


	Software Architecture
	Unique Features of djangoSHOP
	Tutorial
	Reference
	How To's
	Development and Community
	License

